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§ 1. INTRODUOCTION.

TuE kinetic theory of gases can be developed accurately only after the distribution of
the molecular velocities has been determined. This was done by MAXWELL* in the
case of a uniform gas, and by means of his well-known law of distribution the pressure
and temperature can be precisely expressed in terms of the molecular data. His law
does not suffice, however, for the investigation of diffusion, viscosity, or thermal
conduction, since these occur only when the gas is not uniform in composition, mean
velocity, or energy. An accurate theory of these phenomena must be based on the
evaluation of the modified velocity-distribution function, a task which for many
decades has constituted one of the classical unsolved problems of the kinetic theory.

* MAXWELL, ‘Scientific Papers,” I., p. 377, IL, p. 23. The proofs were unsatisfactory, and have been
improved by BOLTZMANN, JEANS, and others.
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280 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

In one special case, as MAxwEiLL found, the actual determination of this function
proves to be unnecessary for the purpose mentioned ; this is the case of a gas composed
of molecules which are point centres of force varying inversely as the fifth power of
the distance. The reasons for the peculiarity in this instance are analytical and not
physical, and unfortunately for the simplicity of the mathematical theory of gases,
Maxwerny’s results® for such a gas do not accord with the observed data of actual
gases. This particular molecular model is therefore interesting chiefly on theoretical
grounds, and it is important to develop the theory for molecules of other types,
which may better represent the behaviour of real molecules.

Until recently no progress had been made towards the determination of the velocity-
distribution function for a non-uniform gas, beyond a theorem by Borrzmany,{ who
proved that the function must satisfy a certain integral equation. Tn 1911, Enskoc]
applied the method of solution by series to this equation ; he determined the form of
the function, but without evaluating its coefficients, and his numerical approximations
proved far from satisfactory. In 1912, Hrueerr§ showed that if the molecules of the
gas are rigid elastic spheres, BourzmaANN’s equation may be transformed into a linear
orthogonal integral equation of the second kind with a symmetrical kernel, and
deduced the existence of a unique solution. LunN| and PropuekT have since removed
Hrrpert's restriction to a special type of molecule, and by means of the transformed
equation Prppuck has worked out a numerical solution of a special problem . on
diffusion. These rvesearches are of much importance and interest, especially from the
logical standpoint of the pure mathematician. The use of BorrzMANN'S equation,
howevever, does not appear to be the best method of actually determining the formal
solution ; thus Propuck states that the symmetrical kernel of the transformed
equation shows no special properties in the case of Maxwellian molecules, and in the
numerical solution it appears to be necessary to repeat all the calculations, which are
very laborious, in every special case which is worked out.

In 1911, by the assumption of a simple form for the velocity-distribution function,
I endeavoured to extend MAXWELL'S accurate theory of a gas to molecules of the most

g

general kind compatible with spherical symmetry.**  Subsequent acquaintance with

Tinsro@’s work convinced me of the approximate nature of my results, and during the
last few years I have given much thought to the determination of the general velocity-
distribution function. By a method which is quite distinct from that hased on

* MAXWELL, ‘Scientific Papers,” II., p. 23. Molecules which are point centres of force varying
inversely as the fifth power of the distance will, for the sake of brevity, be referred to as Maxwellian
molecules. ‘

t BoLtzMANN, ¢ Vorlesungen iiber Gastheorie,” I, p. 114.

1 Enskoq, ¢ Physikalische Zeitschrift,” XII., 58, 1911.

§ Hrpert, ¢ Math. Annalen,” 1912, or ¢ Linearen Integralgleichungen ’ (Teubner), 1912.

| Lunn, ¢Bull. Amer. Math. Soc.,” 19, p. 455, 1913.

9] PIDDUCK, ‘ Proc. Lond. Math. Soc.,” (2), 15, p. 89, 1915 ; ¢f. p, 95 for the statement quoted,

#% CHAPMAN, ‘Phil. Trans.,” A, vol, 211, p, 433, 1911,
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 281

BormzMANN'S equation, viz., by the use of the aggregate of the equations of transfer
for certain infinite sequences of functions of the molecular velocities, an expression for
the velocity-distribution function similar to that found by ENskoc can be obtained,
and general formulee for the coeflicients can be determined. The present paper contains
the solution for a gas in which the mean velocity and the temperature vary from
point to point, the results being worked out at all completely only for the case of a
simple gas; in a later paper I hope to give the solution in the most general terms,
so as to yield a complete theory of viscosity, thermal conduction, and diffusion in a
“composite gas formed of two kinds of spherically symmetrical molecules of any type.
The formulee obtained by the present method lend themselves to numerical calcula-
tion, and are found to converge rapidly. The results for any particular molecular
model can be calculated to any desired degree of accuracy ; in this paper three special
types of molecule have been considered, viz., point centres of force varying inversely
as the n'™ power of the distance, rigid elastic spheres, and rigid elastic attracting
spheres. It is found that, for such molecules, the errors in the approximate formulse
for viscosity and thermal conduction which were given in my first paper do not exceed
two or three per cent. at most. The detailed numerical results, and comparison with
observed data, are given in §§ 10-12. ‘

§ 2. DEFINTTION AND PRELIMINARY CONSIDERATION OF THE PROBLEM.

The Nature of the Gas.

§2 (A). The gas contemplated in our calculations is monatomic and nearly perfect,
“monatomic” implying nothing more than spherical symmetry of the molecules,
while “nearly perfect” denotes a certain state as regards density and temperature ;
this state is such that the molecular paths are sensibly rectilinear for the majority
of the time, being altered by mutual encounters, the duration of which is a very
small fraction of the average interval between two encounters. In these circum-
stances the number and effect of encounters in which more than two molecules are
simultaneously engaged is negligible in comparison with the number and effect
of binary encounters.

The gas is supposed to be acted upon by external forces, and the variations of these
forces, and of the density, mean velocity, and temperature of the gas, with regard
to space and time, are small quantities of the first order at most. In the present
paper the density of the gas is supposed such that the mean length of path of
a molecule between collisions is small compared with the scale of the space-variation
of the above quantities ; the modifications of the theory in the case of highly rarefied
gases, where the mean free path becomes large, will be dealt with in a future
paper. As we are not interested in the mass motion or acceleration of the gas
as a whole, but only in the small variations with regard to space and time, it is
convenient to imagine that, by the addition of a suitable uniform motion and field

2 Q 2


http://rsta.royalsocietypublishing.org/

/an
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

282 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

of force to the whole gas, the mean velocity and acceleration at the particular point
and time under consideration are reduced to zero, the velocity and acceleration at
other points throughout the gas being small, though not actually zero.

Notatron.

§ 2 (B) We shall denote the mass of a molecule by m, the number of molecules per
unit volume at the point (z, ¥, z) by », the components of external force acting on a
molecule at (x, y, z) by (X, Y, Z), the components of the velocity of a typical molecule
by (u, v, w), and the components of the mean velocity of the gas at the point (z, ¥, 2)
by (u,, v, w,). The vector difference between the velocity of a typical molecule and
the mean velocity (uy, v,, w,) will be called the peculiar velocity of the molecule; we
shall denote its components by (U, V, W), so that

(1) U=u—uy V=v—0, W=w—uw,

The Distribution of Velocities.

§2 (C) The distribution of the molecular velocities may be specified by (uy, vy, 20,)
together with a function f(U, V, W), called the velocity-distribution function,
which is defined by the following property: the number of molecules contained
within a volume-element dx dy dz about the point (w, 7, z2) which possess peculiar
velocities whose three components lie respectively between (U, V, W) and (U+dU,
V+dV, W+dW) is

(2) vf (U, V, W)dU dV dW dx dy dz.

Besides being a function of U, V, W, f will depend on the mass m, the absolute
temperature T and its space derivatives at the point (z, y, ), and on the space
derivatives of (u,, vy, w,), but not on the absolute magnitudes of the latter: for we
may evidently impart an arbitrary additional velocity («/, ¢/, w'), to the whole mass
of gas without affecting the distribution of the peculiar velocities of the molecules
at any point. It is therefore legitimate, and it will prove convenient, to suppose
that, at the actual point under consideration, u, = v, = w, = 0; where u,, v, w,
occur in any expression which has to be differentiated, however, they must not be
made equal to zero till after the differentiation has been performed.

In consequence of the definition of f and of U, V, W, f must satisfy the following
equations :—

(3) - Mf(u, V, W)dUdv dw = 1,

(4) m Uf (U, v, W)dudvdw = MVf(u, V, W) dU dV dw

_ m W (U, V, W) dU dV dwW = o,
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 283

If Q denotes any function of the velocity components (u, v, w) of a typical molecule,

while Q denotes its mean value at the point (x, ¥, 2), we have

(5) Q= m Qf (U, vV, W)dU dv dw,

in which, for purposes of integration, Q would be expressed in terms of u,+ U, v,+V,
wy+W by (2). In the integrals (3) to (5), and elsewhere throughout the paper,
integrations with respect to the velocity components are understood to be taken
over all values of the variables, from — o to + o,

The equations (4) may, in the notation just introduced, be expressed as follows :—

(6) U=V=W=0.

The Velocity-distribution Function for a Uniform Gas.

§2 (D) When the gas is uniform, all the derivatives of T and of (u,, v,, w,) are zero,
and f must depend only on m, T, and (U, V, W). It has, in fact, been shown by
MaxwgLL and others® that '

0 PR pa—
i
where
1 —
() =R,

and R is the universal gas constant in the characteristic equation of a gas:

(9) P = RyT.

The Dustribution Function for a Non-unyform Gas.

§2 (E) When the gas is slightly non-uniform, f will differ slightly from the value
given by (7), which we shall denote by f; : we may therefore write

(10) F(U,V, W)=/ (U, Vv, W) {1+F(U, V,W)} = <-}—l;r”l“>3/2e*hm<9*+v2+W*’ {1+F(U, v,W)}.

The function F will be of the same order of magnitude as the variations of
temperature and velocity in the gas ; these space derivatives we shall regard as being
of the first order, and as we shall neglect second order quantities throughout our
work, no products of derivatives will occur in F. Hence, since F vanishes when the
variations in the gas are zero, it must be a linear function of the space derivatives
of T and (u,, v, w,), With no term independent of these derivatives. The coefficients
will be functions of m, T, and U, V, W.

Clearly the form of F cannot depend upon any special choice of axes of reference
(these are throughout taken to be mutually perpendicular), so that F is an invariant

* (Cf. JEANS’ ‘ Dynamical Theory of Gases.’
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284 DR.S. CHAPMAN.ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

with respect to any orthogonal transformation of the co-ordinate axes. This places
some restriction upon the possible modes of occurrence in F of (U, vV, W) and of the
space derivatives of T and (u,, v,, w,), though not, of course, on the scalar quantities
m and T. Tt is easy to see that the most general invariant function of the quantities
involved in F must be compounded of the following elementary invariants :—

(11) C=U+Vv+ W,
' ou, . ov, . 0w ‘ o 0t
1 = Uy , Oy , OW, M= 2
(12), (13) S= ot p” += VT = <ax2+ ay2+az2> T,
AR R BN AW
(14) DT:<uaw+v5§+waZ> T,

(15) S__an +V 8y+w aZ+VW aeraZ +WU\\az+ax,+UV 8w+8y E

together with derivatives of the last four expressions formed by operating on them
any number of times by the invariant differential operators V? and D, in the notation
of (18) and (14).

[January 15, 1916.—~Fxcept in the case of highly rarefied gases, which were
expressly excluded in'§ 2 (A), only the derivatives of the first order actually occur in
F, to the present degree of accuracy. The reasons for this will perhaps be more
clearly apparent after reading § 11, but the following considerations will elucidate the
point. Whatever derivatives are contained in F must (§11) appear either in the
equation of pressure or the equation of energy, so that, if the ordinary equations of
viscosity and thermal conduction are to hold good, only the first-order space deriva-
tives of temperature and mean velocity can be present; otherwise the ordinary
coefficients of viscosity and conduction do not exist. In actual gases at normal
densities the ordinary equations are shown by experiment to be valid; they fail,
however, in highly rarefied gases because the terms in F which contain second-order
differentials of T, u,, v,, w, are in this case comparable with those containing derivatives
of the first order, as will be seen in detail in the future paper mentioned in §2 (A).
The coefficients of the first and second order derivatives respectively contain (A/l) and
(A/1)?, where X is the mean free path of a molecule and I is comparable with the scale
of length within which the temperature and mean velocity vary appreciably ; except
in rarefied gases (A\[l)’ can be neglected in comparison with (\/l). The same inferences
can be made also (¢f. § 6) from the equations of transfer of § 3.

For the present paper it is therefore sufficient (and it is convenient) to write down
the following form of F forthwith :—

= a_'].;‘. ,aI a'_]; i N2 ‘ 12 A N2
(16) F~<uaw+vay+waz>91(c)+sg(c,)+s.93((,),
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 285

this being the only way in which the first-order derivatives can occur in F, in order
that F may be an invariant.

Here P,(C?), P,(C?), P,(C?) denote certain undetermined functions of U, V, in
which these variables appear only in the form U?+V?+W? or C°. The first term of F
is evidently of odd degree in U, V, W combined, and the second and third are of even
degree ; it is convenient to denote them by O (U, v, W) and E (U, V, W), when we
wish to refer to the odd or even part of F separately. |

It is easy to see that, in a uniform gas, f; satisfies the necessary conditions (3), (4).
In the non-uniform case these conditions require F to satisfy the equations

(17) . _ mJgFolU AV dw = 0,

(18) jﬂufoqu AV dW. = jjjvf(,F dU dv dw = mwfoF dU dV dw = 0.

Clearly the odd part O (U, V, W) of F satisfies (17), and the even part E (U, v, W)
satisfies (18), but not vice versd, so that these equations place certain restrictions on

O andL

§3. Tae EqQuarion or TrRANSFER oF MOLECULAR PROPERTIES.

§3 (A) The rate of change of »Q, the aggregate value of Q (u, v, w) per unit volume,
may be analysed into three parts, viz., that due to molecular encounters (which we
denote by AQ), that due to the passage of molecules in or out of the volume-element
considered, and that due to the action of the external forces. The equation
expressing this analysis may readily be shown™ to be

(19) 20 = aq- = | 2 oa -2 x (2]

We may define AQ by the statement that (AQ) dz dy dz dt is the change produced
by molecular encounters during time dt in the sum 2Q taken over all the molecules
in the volume-element da dy dz: evidently =Q = »Q da dy dz.

If in (19) we make Q equal to unity, in which case AQ is clearly zero, the equation
becomes

@ . 8uu0 aV’UO auw0>
o <8x "oy T e

_ Uy | OV, 8w0> < Oy v 8u>
= <a oy T o) T \Magt gy T 5,

which is the equation of continuity.

# Cf. JEANS ‘Dynamical Theory of Gases.
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286 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

Except under the differential sign we shall write v = U, v = V, w = W, since we are
supposing that u, = v, = w, = 0 at the point (x, y, z). The last equation consequently
reduces to

1o (B v, )
(20) BT <8x+8y+8z '

In taking mean values of functions of U, V, W, as in (5), we shall neglect the part
F in the velocity-distribution function f; in cases where the mean value is to be
differentiated or multiplied by a small factor, since the resulting error is only of the
second order.* - Thus, in such cases, we shall write

(21) V0% = LCPe0 GACReD = 1CP0H0, \AWECEGD = 1 (EGHD,
(22) C* =1.3.5...(2s+1)(2hm)~,

while, 1if either p, ¢ or » 1s odd,

(23) UPVIW™ = 0,

Since the equation of transfer involves derivatives of the first order only, it is
sufficient, whenever the mean value of a function of u, v, w is to be differentiated, to
expand it by TAvLOR’S theorem in terms of wu,, v, w,, so far as the first degree only ;
if, then, the coefficient of w,, v, w, is of type (23), the corresponding term may be
omitted altogether.

Case I. Q = u (v’ +0° +w’).

§3 (B) When Q = u(v’+v°+w’), according to the principles just laid down we
have

D () = 2
ax(”“Q) T o

y (UC% 4 20,0 C% 4 25U (u,U + 0,V +w,W) C26=V 4 L)

: _a_(VWT)>= 1.3.5...(23+3) P V<_1_>s+1

1 9

® x 3 ox \2hm
_1.3.5...(2s+3) 1>s’1 o _a_<1> 3(1)}
- 3 <2hm {th ow " 32 \2hm) T 3w \2hm/ )’

%(V;)Q-) =‘0> %("m) = 0,

x .
* Except in gases of very low density.
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neglecting in each case quantities of the second order. Since Q is of the first order,
to the same degree of accuracy as in the above equations, we have

Again, writing » = U, v = V, w = W after differentiation, we have

§—_>__% —SREGTD 1 —23_1»3.5-.-(2-%3)( 1 )
<au = C*42sU*C =1(2s+8)C* = 3 2hm/ -~

Here we have omitted UVC*¢~? and UWC?*“~?, since when multiplied by X, which
is of the first order, the result is of the second order, and hence negligible.
Similarly

B @-o

The equation of transfer consequently takes the form

(24).AUO%=1.3.5...(2s+3)< 1 >{ 1 o a< 1 >—1X+ a<~i_3}

3 ohm) \2hm oz " ox\2hm/)  m s O \2hm)/

When s = 0, this becomes

Lo, 8 _1_~> _
AV = o e T e 2hm mX
Now mAU 1s the rate of change of momentum per unit volume due to the

molecular encounters, and, since action and re-action are equal and opposite, this
change is zero. Hence we have, remembering that (24)~' = RT = p/,,

_ Lo /1N _ 3 /v\_dp
(25) vK = 2h dx +V8x <2b> T ox <2h> T o’

which is one of the equations of pressure of the gas.
On substituting the value of X given by (25) into (24), the latter may be written

N

—

0"
o’

2hm)*+! 3 1
2 ( =2 C?s —
(26) 1.3.5...(28+3)SVAU T

where we have used the equation (¢f. 8)
o (1\_1ar
2him ox <2hm> T Tox’

There are two equations similar to (26) giving AVC® and AWC® in terms of 07T /dy
and 0T/0z. ’
VOL. CCXVI.—A. 2 r
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288 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

Case II. Q = 12 (u*+v* +w?).

3 (C) Making approximations and reductions as in Case 1., we have

rariom ___1.3.5...(28—’;—3)@ < 1\
Bt( Q} ot <3VC ) 3 ot 2hm>

_1.3.5...(2s+3) ( >s+’ (10w “T}
= = Som) ot 1) s

J TN J (130 12s » 2s E 2(s—
o (uQ) = o {UPC* + 314, U2C* + 25U7 (1)U + 0,V + a0, W) C2eV L}

0 3.5...(2s+5) 1\t o,
— 2 Oz<s+1) Oz<s+1) _ < Uthy
ox vty +3s )= 5 ’ 2hm> ox’
a s 8 2 2 2(\2s 2 (s—1)
5;/(wQ) 5" {UNVCE +0,UC* 4+ 25UV (1,U + 1,V +10,W) C26-V 1}
G R sy 2 (CTET) 1.3.5...(25+5) “"80
5 yo, (FC?6+D 4 2 sC26+D) 5 ( m>
9 .. (25+5) ( >"+‘ ow,
(VuQ) ].5 2hm oz
<99-) = 2UC>+2s5U°C*¢Y = 0, (8Q> 0, (i«\ =
ou, oV G

The equation of transfer may therefore be written

arves _ 1.3.5...(28+8) 1 \s+1[ {1 Oy aT}
(27) AU = 15 ”<2hm) S a0 gy

+(2s+ 5)< oty 2;]“ + 8f” ")] .

oz

When s = 0, this becomes

Lov , 10T ouy, OV,  ow
AUZ — 14 [ C + +3 _’\__Q+ Y + 0}
ohmlv ot T ot ox oy 0z

If to this be added two similar equations giving AV?and AW? on the left-hand
side we have A (U*+V?+W?), which is the rate of change of molecular energy due to
encounters ; by the principle of conservation of energy this is zero, so that

duy O,  ow,
3<———+£8T>+5(Ou°+‘iz"‘+%> =0,

ot To¢ ox oy Oz
or, by (20),
1T _ _p(0uy  Ovy 8wy _ 210v_ »10p
(28) Tot 3<8x+8y+8z,/—31/(t—3p8t'
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On integration this gives Tp~" = constant, or, since p = RJ/T, it is equivalent to
pp~"s = constant ; this is the law of adiabatic expansion for a gas which possesses only
translational energy.

o o)
Eliminating 1 % and %%F from (27) by means of (20) and (28), we have
v O (¢

s _ 1.8.5...(25+3) < 1 >-*+1[_5 <§% v, ?_%>
(29) AUC» = T 57— 2(2s+5) 8w+8y+ P

Quy . O, 820\1
2545) (3 2 4 2y 2
+(2s+ )\ 8.7:+8y+ 6z,>w

1.3.5...(2s45) < 1 >S“< ou, ov, 0w,
2 g U _ Oty _ 0y
45 "\2hm, )
or

(2hm)+1 45 AU = 28%, ov, ow,

1.8.5...(2s+5) 2v dr dy 0z

(30)

By transformation of axes, or otherwise, we may deduce the equation

(2" 45 o (0 2w,
(31) 1755, (375) 2, 22VWE=3(5+ ay)'

§4. Tar Errecr oF MOLECULAR ENCOUNTERS.

§4 (A) In this paper our primary concern is with simple gases containing molecules
of one kind only ; the difficulties are much enhanced when molecules of two kinds are
present, especially as regards the equations of transfer, and the final determination
of the coefficients of ¥ when AQ has been calculated. These matters will be dealt
with in a future paper, on diffusion and the general theory of composite gases. In
the calculation of AQ, however, there is scarcely any advantage in making the
restriction to one kind of molecule only, and it is convenient to carry out the
calculation for a composite gas in order that the results may be quoted without
repetition in the later, more general, investigation.

The notation of §2 may be adapted to the case of a composite gas without further
change than the addition of suffixes 1, 2 to denote to which group of molecules
a symbol such as », m, U, V, W, f, F refers. The mean velocity of the. two groups
will be supposed the same, so that (u, v, w,) is the same for both, either
separately or together ; similarly, their temperature or mean energy, and their
relative densities (v/v,) are supposed constant. All the remarks made concerning
S and F hold both for f; and F,, and f, and F, these being functions respectively
of (U, Vi, W) and (U, Vi, W,); they may each now be expected to involve v, :»,
and m, :m, in addition to the quantities mentioned in §2. A further important
consideration which did not arise there is that f; and £, or ¥, and F, are simalar,

2 R 2
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290 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

in the sense that either may be obtained from the other by interchanging the
suffixes 1, 2.

Notation for an Iincounter.
&

§4 (B) Before proceeding to the actual consideration of the dynamics of an encounter
between two molecules iy, m,, 1t 1s convenient to explain the notation to be used.
The symbols my, my, mo, s, and uy, are defined as follows :—

(32) My = 1y + 1y,

(33) w = myfmy, g = M1y,

(34) Mg = ml/m2 = Ml/ug, My = f/m/m1 = ,l,L2/,U.1,
so that

(35) prt e =1, wl A = 1 =2,

(36) Upottey = 1.

Velocities will be represented either by their x, y, z components or in vector
notation. The components of the actual velocities of the molecules will be written
(U, vV, W), while those of other velocities, such as the velocity of the mass-centre G,
or the relative velocity, will be written (X, Y, Z). The amplitude of a velocity will
be denoted by C, and the vector itself’ by the same symbol in small type with a bar
beneath, viz., c. :

The velocities of the molecules iy, m,, and of G will be distinguished by the
respective suffixes 1, 2, 0, while the suffix R, similarly, will indicate reference to the
molecular velocities relative to (& or to one another. As regards time, square brackets
enclosing a symbol, such as [X,], [¢,], will indicate reference to some particular
(arbitrary) instant during the encounter; a symbol without brackets but with an
accent () will refer to any instant after the encounter,® while when there is neither
bracket nor accent it will refer to any instant before the encounter.

Analysis of the Motions wn an Encounter,

§4 (C) In the above notation the initial and final molecular velocities are respec-
tively ¢;, ¢, and ¢y, ¢y, or (Uy, Vi Wy), (U, Vo, W,) and (U'y, V4, W), (U, V., W) ;5 also

(37) C* = U+ Vi+ WY

* That is, any instant after the molecules have separated beyond the distance (which in actual gases
is, at most, very small) at which their inter-action is appreciable ; the words “ before the encounter” are
to be interpreted in a similar sense. In this sense the velocities of the molecules before and after the
encounter are definite and constant.
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where C, U, V, W all have the same suffix 1 or 2, with or without an accent (').
Similarly, the mass-centre G has the velocity ¢, or (X, Yo, Z,), and since (by the
principle of conservation of momentum) this remains invariable throughout the
encounter,® we have

(38) Co = mC+paly = mCy+ s = m [Cl] + 1y [92],

or
Gy = Qlo = [fo]

Since, by (88),
(39) my L]l = —m, {[ea]=[elt = momams {[er]=[ec2]} = mo (mae)™ [,
where [¢;] 1s defined by the equatioﬁ

(40) [QR:I = (:“1:“2)1/2 {[91] - [fz]}p

we see that the momentum of the molecules, relative to (i, is equal in magnitude but
opposite in direction in the two cases, its value being +m, (mus)"[ci]. The relative
velocity of the two molecules is, by (40), equal to (uus)~"[¢r] ; this varies throughout
the encounter; owing to the inter-action of the molecules ; its initial and final values
are given by

1

(41) Cp = (M1M2)— h (Ql"?z); Q,R = (:“‘1#2)_112 (9,1—9,2):
which are special cases of (40).
Equations (88), (41), and the reciprocal equations

. . 1, . 1,

(42) € = CytpuanCr Cy = Coy—thiz " Cny
p : o YR J o Yy o

(43) C1 = Cy+ /2_0 R Cy = Qo"'//qzl‘QRa

indicate that ¢, ¢, or ¢, ¢s are equivalent to ¢, ¢, or ¢, 'y, as specifications of the
initial or final velocities of the molecules. Hence the problem of determining the
final velocities of two molecules after an encounter, in terms of the initial velocities
and whatever further independent variables are necessary to define the encounter, is
equivalent to the determination of ¢’y in terms of ¢, and the variables of the
encounter. Thus, in consequence of the invariability of ¢, the velocity of the mass-
centre, we need only consider the motion relative to G, ¢.e., the motion referred to
uniformly moving axes with G as origin.

* We here suppose that the effect of the external forces during the brief interval of encounter is
negligible ; this is legitimate if the gas is “nearly perfect” (¢f. § 2).
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292 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

The Motron Relative to the Mass-centre.

§4 (D) Relative to these axes the molecules are initially moving along parallel lines
with equal and opposite momenta +my, (wu,) ey, by (39). The plane containing these
two lines is clearly the plane in which the inter-action and motion of the molecules
will take place during the encounter. It is parallel to ¢y, but its orientation e about
this direction is independent of ¢,, ¢y, %.e., it is one of the additional variables needed
to specify the encounter, and, similarly, so also is the perpendicular distance p between
the initial lines of relative motion. It is convenient to measure ¢ from the plane
containing ¢, and ¢y,

In the plane of relative motion so defined, the molecules describe orbits which are
similar to one another (the origin G being the centre of similitude), and symmetrical
about the line of apses (7.e., points of closest approach). Kach orbit has two
asymptotes, one being the initial, the other the final line of motion ; the distance
between the pair of final asymptotes is clearly equal to that, p, between the initial
asymptotes. The angle x,, between the two asymptotes of either orbit measures the
deflection of the relative motion due to the encounter; for molecules of given types
it is a function of p and C;* only, the nature of the function depending on the law of
inter-action between a molecule m, and a molecule m,. We shall find it convenient,
for the sake of generality as well as of brevity, to retain x;, as an unspecified function
of p and C, in our equations; the special properties of the molecules under
consideration are, throughout our work, involved only through the dependence of
xi2 on p and Cy,.

It is easy to see that the magnitude of the relative velocity (wu,) "¢y is unaltered
by the encounter, s.e.,

(44) Cp = Cly:
for by the equation of energy we have
(45) 3 (mC24m,C2) = F(m,C24m,C2) = dmy, (C2+C) = dm, (C2+ 2

by (42) and (48).

The Velocities in Spherical Polar Co-ordinates.

§4 () The above analysis of a molecular encounter may be made clearer by the
following figure, in which z, ¥, 2, ¢, ¢y, ¢y are the points in which a unit sphere

* That is, on p and on the amplitude Gy, of the vector ¢y.
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centred at O is cut by radii parallel respectively to the co-ordinate axes and to ¢, ¢y,
and ¢’;. Then we have

(45A.) € = CUCRC/R, X2 = CR()C,R'
¢,
R R
A
C
eR ° 90 (.I
$/00
€ X,
CR .
o Y
Z

It is convenient also to use certain spherical polar co-ordinates, as follows, taking
Ow, Oxy as initial line and plane for ¢; and ¢y, and Ocy, Ocyx, or Oc/y, Oc/ya for ¢,
Thus we write

/ / / /
(46) O = cxOx, 0’y = Oz, 6, = Q.oocm 0y = ¢,0cy, A = ¢,Oz,

/ / —_ e "
(47) ¢r = CrY, ¢'r = Cxr¥Y, Py = CyCr¥, ¢y = cofgee.

Evidently we have

(48) cos &, = cos 6, cos x5+ sin 6, sin x;, COS ¢,
(49) cos 0y = cos By, €oS x5+ Sin O, Sin x;, COS €+ ¢y,
(50) cos A = €08 6, cos O+ sin §, sin 6y, cos ¢,

= cos 0/, cos 0’3+ sin &'y 8in €'y, cos ¢,

FEaxpressions for the Velocities After an Encounter.

§4 (F) We have thus indicated how the final molecular velocities ¢}, ¢, are to be
determined (¢f. 48) in terms of the initial velocities ¢,, ¢, or ¢, ¢; together with p and e
(these being the eight independent variables of an encounter). This has been done
by showing how ¢/ depends upon ¢y, p and e; it has in fact been shown that the
spherical polar co-ordinates of ¢y, referred to ¢, and the plane ¢, ¢; as initial line and
plane, are Cy, x;, (a function of p and C,) and e. Hence we may at once write down
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the expressions for the initial and final velocities and velocity components in terms
of ¢,, ¢, p and ¢, as follows :—

(51) wmC? =6, (COS 6,), 102 =06, (cos6,), wl\ =6, (COS 00), =6, (COS 9/0);

(52) { ' tUp = G cos N+, MOy cos O, U,y = w1y "C, cos A — i *Cy, cos Oy,

3 1 1y, Y1l - 1, 1,
m"U's = w'*C) cos N+, "Cy cos Oy, wy U’y = ‘Cy cos A —puy *Cy, cos 0y,

where we have adopted the convenient notation® defined by

(53) {612 (cos 8) = w,Cl+wCi2+2 (,uzl,uz)‘/ﬁ()o(jR cos 6,
53

0. (cos 0) = O+ mC?—2 () "C,Cy; cos 6.

Equations (51) to (53) are merely particular cases of (42), (48), expressed in terms
of amplitudes (51, 53) and of @-components (52). The latter might also have been
written in terms of the components of C, and Cy, as, for example,

(54) Ut = Xot o "Xy = Xo+po™ {Xy cos X1‘>+(YR +ZL) SN x5 COS (5+¢u)}

by (49), writing (X, Yo, Zo), (Xg, Yas Z1), (X'x, Y'x, Zy), for the components of ¢, ¢y ¢/y.
Equations similar to (53), (54) may easily be written down also for the y and z
components of the velocities. ’

The Dependence of U'}, V';, W on yp.

§4 (G) From (51) and (54) it is clear that any function Q, (U, V1, W) of U'y, Vi, W’
s a function of U, Vi, Wi, Uy, Vo, W, p and ¢, or of Uy, Vi, Wy, U, Vi, Wa, xie and e,
since p is involved only through y;, (though x., is not entirely independent of the
preceding six variables, since it depends upon (). If Q, (U%, V1, W/, ) be regarded as
a function of x,, when y,, is made equal to zero it reduces to Q, (U, Vi, W) simply :
this may be seen either from (51)-(54) or, still more readily, from the figure on p. 293,
since when y,, = 0, ¢/, becomes identical with ¢,, and hence by (42), (43), so also does
¢, with ¢. '

Transformation of Co-ordinates.

§4 (H) In §5 we require the Jacobian of transformation

g=2

Ull, V,la Wll, U/25 V,2’ W/2)
(Ul; Vl; Wl) U2) V,‘Z} W2>

between the initial and final velocity components, p and ¢ being constant. Since the
motion during an encounter is reversible, the relation between the two sets of velocity

* In §7, for the sake of brevity, we shali write Oy, Oz, 015, 0y respectively for Oy, (cos b)), O (cos 6),
619 (COS o 0), and 611 (00S @’ 0)
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components is reciprocal, so that J = +1. It may readily be seen that the positive sign
is the correct one, by considering a particular case of variation, say dU; = dU, = dU,
dV, = dV, = dV, dW; = dW, = dW. This is equivalent to the addition of a small
velocity (dU, dV, dW) to the whole system ; obviously this will reappear in the final
velocities, so that also dU’, = dU’, = dU, dV, = dV/, = dV, dW; = dW, = dW. In
this case, and therefore always, we have J = 1, so that

(55) AUy AV AW, AU, dV, AW, = d U, dV, dW, dU, dV, dW,.

With a little more trouble this might also be proved analytically from the equations
of this section.
From the component equations corresponding to (42), (43), .c., from

( ) {Ux = Xo+ a1 "X, Vi = Yo+psn" Yy, Wi = Zy+ sy " Zy,
56

Uy, = XO—M121/2XR’ V, = Yo“‘//qzlleR; W, = Zo":ulzl/2 Ly,
(57) G = X'+ Y, +Z,, Cy = X+ Y*+Z¢,

it 1s easy to prove that

0 (Uy, Vi, Wy, Uy, Vo, Ws)
(58) -
0 (Xo» Yos Zoy Xg, Yrs Zg)

- (Mle)le-

Hence, by further transformation to polar co-ordinates, we have

(59)  dU, AV, AW, AU, dV, AW, = — (uyms)~ dX, dY, dZ, dXg Yy dZy
= — (muy) " C2CR? dC, dCy, d cos 6, d cos Oy dpy depy.
Since dU; dV; dW; dU, dV, dW, is essentially positive, the negative sign on the right
of (59) must be made positive, if the limits of C, cos 6, and ¢ in each case are taken

as 0 to + o, —1 to +1, and 0 to 2= respectively; it may readily be seen that the
negative sign corresponds to reversed limits of integration of one of the variables cos 6.

§5. THE GENERAL EXPRESSION FOR AQ,.

Definition of AuQu and A,Q,.

§5 (A) The rate of change of »Q; due to molecular encounters, i.e., AQ;, may be
divided into the two parts AuQi, A,Q, due respectively to the encounters of the
molecules m; among themselves, and those with molecules m, Thus

(60) | AQ1 = Aan + A12Q1‘

We shall chiefly consider A;,Q,, whence A,Q, may be obtained by changing the suffix
2 into 1 throughout.
VOL. COXVI.—A, 28
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The Expression for AQ,.

§5 (B) The number of molecules m; having velocity components lying between the
limits (Uy, Vi, W,) and (U, +dU,, Vi +dV,, W, +dW,) is, by our definition of £, (Us, Vi, W,),
equal to _

nfi (Us, Vi, Wi) dUs dV, dW,

per unit volume. The number of encounters in time d¢ of any one of these, with a
molecule m, having velocity components lying between the limits (U,, Vi, W,) and
(Us+dU,, Vot dV,, Wo+dW,), the variables p, e of the encounter lying between p and
p+dp, e and e+de, 1s equal to the number of such molecules m, contained within a
small cylinder of length (uus)~"Cy, dt and of sectional area p dp de, 7.e., to

Vo (,U«],Uvg)ullztf‘g (Ug, Vg, Wg) CRP dp dG dU2 dV2 sz dt.

Thus the total number of encounters of the above type, per unit volume per unit
time, is ‘

(61) V1V (/U~1/U'2)J/2 1 (Ub Vi, Wl)fz (U2, Vs, W2) CRP d]O de dUl dVl dWl dUz dvz sz-
At each such encounter the change in the value of Q. (U, Vi, W;) is clearly

(62) Qi (U5, Vi, W) =Q, (Uy, Vi, Wi),

or Q',—Q,, as we shall write it for brevity.

We shall include the effect of all possible encounters per unit volume per unit time
if we integrate the product of (61) and (62) over all values of ¢ (0 to 2), p (0 to o)
and (U, Vi, W,), (U, Vo, W,) (each from — oo to + o). Such an integration will
include encounters which are not binary, but our postulate that the gas is nearly
perfect (§2) implies that our integral would be altered only inappreciably if the
upper limit of integration for p were not infinity but equal to the very small distance
at which two molecules cease to exercise any appreciable inter-action. Hence,
throughout this paper, where no limits of integration are specified, it is to be under-
stood that they have the above values. Thus we have

(63) 20 Qu = s ()™ [ [ ][ [( Q= Q) ASiCp dip e Ay dv, ds AU, A, AW,

The term f1f; in the integrand may be written

3:"2 3/‘2 )
(64) <}i:—ll> (%@) 6ah(m10)’+m2022) {1 +F1 (U1> Vl, W1)+F2 (Uz, VZ» Wz)}

3
= (pape)™ <}%> e~ €0 (1 4 F + Fy),

where, in the first line, we have neglected F,F,, which is a second-order quantity,
while in the second line we have made use of (45).
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The unit term in (14 Fi+F,) may be omitted.

§5 (O) It is easy to show that the part of (63) which arises from the unit term of
(1+F,+F,) in (64) is zero. For it may be written in the form

jj LAY _(hm()/ 7r)3 CR P dp de,

where

¢ = MM{Q (U, Vi, W) —Qu (Us, Vi, Wa)} €70 40 U,y dvy Wy AU, AV, AW,

Now by (45) and (55) the latter is equal to

(65) mm Q (U}l, Vi, W) e hme+m0s gyl dv’y dW'y dU’y dv’, dW,

_ j j ﬂHQI (Us, Vi, Wy) gm0 4m0 U, v, dW, dU, dV, dW,,

But the latter two integrals are equal, since they are definite integrals differing enly
in the symbols used to denote the variables. Hence (65) is zero, and the unit term
in (1+F,+F,) may be omitted from A,Q,.

The same result can be seen also in another way: the part of A,,Q; under
consideration is that obtained by putting ¥, = F, = 0 in fif;, v.e., it is equal to the
value of A,,Q; in a uniform gas. In a uniform gas, however, as we may see from the
general equation of transfer (19), AyQ: = A;,Qu = 0, whence the result follows at
once.

If Q(U,V, W) @s of odd degree, the even part of F(U,V, W) contributes
nothing to ALQ, and vice versi.

§5 (D) We may now, therefore, write A,Q; in the following form, transforming
the variables (Uy, Vi, W1), (Uy, Va, Wa) t0 (X, Yo, Zo), (Xns Yo Zz), by (56), (58).

3
(66) A12Ql = ViVoMifha <hm>

viron
T
WJ H j j (Qr— Q) 7@+ (Fy 4+ T,) Cyp dip de dULdV1dWL AU, dV, AW,

= ) {2
U_UHH(Q,I —Qy) e Mm@ +C (R, + K,) Cyp dp de dX,AY,dZ, Xz AYrd Zy.

We here suppose the functions Q (U, V, W) and F (U, V, W) expressed in terms of the

new variables and (in the case of Q) of ¢ and xy, (or p). We are concerned both as

regards Q and F only with terms which are integral in the variables U, V, W; in

reckoning their degree we shall make no distinction between U, and U,, &ec., or
282
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between X, and Xy, * &c. Then since the equations of transformation (56) are linear,
any term U,'Vi"W,"UVAW," in Q, (¥, -+F,) transforms into the sum of a number of
terms X,°Y"Z, XY w2 Zy such that

l+p = a+d, m+q = b+e, n+r = c+j.

This is not true in the case of Q' (Fy+¥H,), since (by 54) U';, V/;, W are not rational
functions of the variables X, Y, Z, but it 4s true of (F,+F,) [Q’) de, since the integration
with respect to e causes all the irrational terms in Q' to disappear.f This may be
proved quite generally, but it will be sufficient here to indicate the proof for the case
Q1 = U;C/¥, s being any positive integer. We may write

. Q) = ULCH» = (X+aCy sin 0y cos e+ ¢, ) (C?+2aC,Cy, sin 6, cos ¢)’,
where

@ = R X2 X = Xo+ s "Xg €OS X1,
C? = G+ i+ 2y (XX + Yo Y+ ZoZy) €OS iz,

so that X is of the first degree in X, or Xy, and C*is of even degree in the variables
(Xo» Xue)s (Yo, Yi)s (Zo, Zg). The only terms in Q4 which do not vanish on integration
with respect to e are of the form '

X 1,C,, (C?)2 (2aC,Cy, sin 6, cos €)%}
or
(CyCy* sin 6, sin 6, cos?*! ¢ cos e+ ¢y) {2a%C,, ,, (C?)~21 (2aC,Cy, sin 6,)%}.
Now we have

(OUOR sin 90)2 = 002 '€R2 (1 --cos’ 90) = {00201:2—()(0)(1{“]“ YOYI€+ZOZR)2}>

which is an even function of X, Y, Z, and can be included under the symbol C%
Thus, on integration with respect to ¢, the above expressions become (apart from
a factor not involving X, Y, Z explicitly)

XC%,  (C,Cg? sin 6, sin 0, cos ¢,) (2P
and by (50) the latter may be written
CiOx’ (cos X—cos 0, cos ;) G20 = [X, O’ X (X X+ Yo Y+ ZyZg) | G767,

Both these expressions, and consequently [Q, (Uy, Vi1, W) de as a whole, are of the
form XC* in the sense above defined. Similarly it may be shown that JU"C/\* de is
even in all three variables (Xo, Xz), (Yo, Yr), (Zoy Zy).

* So that, for instance, X%, XoXy and x;,2 will all be regarded as even functions of x.
1 The explicit occurrence of X, v, z in jQ’l de is here referred to; the latter may involve Oy irrationally
through x1e.
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In the integrand of (66), the exponential term and Cy (whether occurring as an
explicit factor or implicitly in y,;) are even functions of X, Y, Z. Hence a term such
as XoYZe XY Zy in [(Q1—Q1) (Fi+F,) de will contribute nothing to A,,Q; unless
@, b, ¢, d, e, f and d fortiors a+d, b+e, c+f are all separately even. In view of
what has been proved above, therefore, it appears that in Q (U, V, W) F (U, V, W)
only the terms which are even in U, V, W separately contribute anything to A,,Q..
Hence if Q is odd in U, only the part of F which is likewise odd in U need be
considered, while if it is even in U, only the even part of F need be considered.

Introduction of Ty (xis).

§5 (BE) We now make the final transformation of A,,Q, by adopting polar co-ordi-
nates in place of (Xy, Yo, Zy), (Xg, Yn, Zg), as follows :—

3
(67)  ApQr = vy (uyps) ™™ <hm°> Hje'h7"o<002+0;'> {1, (o)=L (0)} C2Cy?p dp dC, dCh,

mw
where

(68) Tu(x2) =[] Q1 (U0 VA, WA) {4 (U Vo, W)+ B (U, Vi, W) dedcos @y dcos Oy
(69) Il(o) :JJJJJQI (Ul: Vi, W1) {FJ(UI; Vi, W1)+F2(U2> V2,W2)} ded cos 6, d cos 91€d¢0d¢R'

Evidently (¢f. § 4 (G)) the latter is obtained when x,, is made zero in I (x.), since xus
is not concerned in the integrations of (68), (69), being a function of p and Cy only,
while when y,, = 0 we have Q, (U, V', W1) = Q1 (U, Vi, W1).  Hence, in calculating
ApQ we shall concern ourselves only with I, (x;,) until we come to the integration
with respect to p, Oy, C,. In so doing we shall, from the outset, omit from F (U, V, W)
those parts which, in accordance with § 5 (D), contribute nothing to the final result.

§6. Tue Form or TaE Funcrion F (U, V; W).

The two special forms of @, which we consider are U,?C,* -and U,C,*; the only
parts of T (U, V, W) which are relevant in these cases are respectively the part of
E,+E, which is even in V and W,, and O,+0,; the notation here used is that of
§2 (E), p. 283. From (26) and (30) we see that AU,C,* involves the space derivatives

10T

= == while AU*C,* similarly involves
T ox

of mean properties of the gas only in the form

only 2 %%}9 — %yy-" - 8_8@% We deduce from this that O (U, V, W) must certainly include
the term

1/,oT  ,oT oT 3
(70) T<U 8m+v ay_era—z> P, (C?),
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and that E (U, V, W) must similarly include the term

(71) (e U+ CouV2 + W2 € VW + e WV +¢,UV) P (C?),
where
Lc3g=2a£°-—%—%%’, 012—3<%y—°+%‘>.

The factor of P (C?)in (71) is equal to 38'—C?S, by (12) and (15), and is therefore
an invariant with respect to an orthogonal transformation of axes.

Further since, by (26) and (30), no other derivatives of T and (u,, v, w,) occur in
AU,C* or AUC,)*, we conclude that none such appear in F (U, V, W)—at any rate,
to our degree of approximation; thus the other terms in (12)-(15), while they
possess the invariant property, do not satisfy the other conditions which must be
fulfilled by F (U, v, W).

- We therefore conclude that F (U, V, W) is composed only of (70) and (71) to our
order of accuracy, and we shall suppose that the two functions P (C?) are expansible
as power series in (% Throughout this paper we shall assume that all convergency
conditions necessary for the validity of our analysis are satisfied ; the justification
of this assumption would offer serious difficulty, and the investigation would lead
us into regions of pure mathematics which are largely unexplored, and would be
unsuitable in the present paper. In §10 we shall see that numerical approximations
for the most important molecular models confirm the assumption of convergence
sufﬁmently for our purpose.

It is convenient to write our expression for F (U, V, W) in the form

oT | oT . oT (2hmY .
(73) F(U,V, W)= T<Ua Vo +Waz>@201 55 ey e

; \ 2 2hm)"
—C2hm (e, U? + oV + s W + e VW + ey WU +012UV)¢E:0 T3 <5 ()2r+ 5) v, C?r

In the first line, when = = 0, the factor » in the denominator is to be omitted.
The suffix 1 or 2 must be added to m, U, V, W, C, 8, y when we wish to distinguish
between F; (Uy, Vi, W;) and F, (U,, V,, W,).

Since, by (72),

(74) Cnt Gty =0,
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it is easy to see that (18) is satisfied by this form of F, Whﬂe in order to satisfy (17)
we must have

(75) | B+ 38, /(r+1) =

The products B,8,, By, are quite definite, but B, and C, can evidently be assigned
arbitrarily ; we shall decide that their values, though unspecified for the present, are
alike for F, and F..

The above expression for F (U, V, W) is equivalent to that obtained by Exskoa (§ 1),
by an entirely different method. But the chief difficulty of our problem, and one
hitherto unsolved, lies in the determination of the coefficients 8 and v ; this is effected
in the present paper by means of AQ.

§7. TeE CALOULATION OF AQi.

§7 (A) In calculating AQ, we shall deal chiefly with A,Q: (¢f> § 5 (A) and (67)).
The parmcular forms of Q, which we shall consider are

(76) Q: = (2hm,)+U,C* = B,
(77) ’ Q= (thl)sﬂulzol% = @1(.@)'

In accordance with §5 (D), the only part of F(U, vV, W) which is relevant to
AaBl(S) iS ’

19T, = (2hm)y

' — Bt N} 27
(78) Borp V2155, (@r+3)r Bral,
while that Whlch alone concerns A@,* 1s
_ 2, . \2 2) < (2 ) o, (e
(79) 2hmCy (€1 U? + V2 + 53 W?) % T3.5...(2r+5) v,C%.

As to the latter, since the remainder of the integrand of A@,"” is symmetrical with
respect to V and W, the parts of this integral arising from V? and W? in (79) are
equal, so that cuV?+cW? can be replaced by % (ca+cs) (V2+W?) = —Fen (CP—U?),
by (74). Hence for our purpose (79) is equivalent to

(th) o
. (2r+5) 7" 7 G

(80) —1(2hm) Cyen (3UP—C?) _35

We shall denote by b,,(rs) the part of A3 which arises from the term
—(2hm,)**U,C\¥ in Fy(Uy, Vi, Wy), and by by, (7ys1) the part arising from the corre-
sponding term of F,(U,, Vs, W,), in each case the numerical and other factors in F
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being excluded.® The corresponding portions of T, (x;,) will be denoted by I (7.1, xi2)
and I (rys,, xi) respectively. Then

(81)  LI(rs1, xu2) = m j j (2D, Y+ UL CL 2 U, O de d cos 6, d cos 0y d, depy,
(82)  I(rys), x10) = J‘Hﬂ (2hmy,)r o+l s+, UL CL%UL,Cl de d cos 0, d cos Oy dey der,

(83) blZ (7"131) = TV (M1M2)-‘/2<ZZ—’Z5>L

] e T (s, 300)~T (s, 0)} G20 p dp dC, dC,

3
(84). by (758) = — vy, (uapan) ™" <@ZE>
j J J MmO+ O [T (1,5, x10) — 1 (155,, 0)F C2C4% p dip dCy dC.

The similar quantities relating to A&, will be denoted by ¢, (s,), ¢y (755,) and
J (7481, x12), J (7581, x12) Tespectively, so that :

(85) J (”'1'5'1; X12)

= ”HJ L (2huym, Y+t U202 (38U 2—C)? ) G de d cos 6, d cos Oy depy dpy,

(86) J'(rzsl, Xlg) |

~

= JJJ” + (tho)r+s+2 gt Y 2O (3 U2 —Cy?) O de d cos 6, d cos 0y dipy depr,

.

3
(87) cua(ms) = —vuws ()™ <h—:?2>

jjj eI (G0 {J (”"131; X12) —J (”"151> 0)} 00201319 OZ]O dC, dCy,

3
(88) Ciz (7'281) = Thhe (Ml#.‘z)J/Q (Z%B

» jﬂtewmo((,foﬂw;) {J (”"231; Xl2) —J (7"231, 0)} 00201{317 Olp dC, dCy.

* We have here included a factor (2hm)': which does not occur in F; this will be allowed for
subsequently.
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The Integration with respect to Oy, ¢, Gy

§7 (B) In I(rs, xn) and J (78, x12) it is clear from (48) to (53) that ¢, does not
appear at all in the integrand, while 6; and ¢, occur only in the products U,U and
U2 (8U?—C?) respectively. We have

U U, = C2 cos® A+ uy Ci? cos 0y, cos 0y + s 2C,Cy cos A (cos 6+ cos 0'y),
U U, = C2 cos? A\—C}2 cos 0y, cos 0+ C,Cy, cos X (e cos 6y —pmy, ™ cos 6y),

and, remembering the values of cos X and cos 0y, we have
J.jj U/] Ul d COS 0]( d(/)o Cl(‘bR = ’%‘77'2 {002 +I“210R2 COoSs X]2“‘M2IIIZCOOR (COS 60 + CcOS 6’0)},

J-H U U, d cos Oy dg, dey = §7° {C2—=C,2 cos xus+ CoCh (1 cos 6y —p,, ™ cos 6,) .

In the notation of (53) the latter two equations may be conveniently re-written as
follows :—

M Jjj U/1U] d COS 6]} dq.’)o d¢R = ’%7{'2 {6]2 (COS 60) +6]2 (COS 9’0) —2,(1120]{2 (1 — COS X12)}.

()™ J-H U, U, d cos O dey dpy = 47° {11,704 (08 6,) + un 61, (cos 6'y)
+2 (M1M2)1/ZCR2 (1 — CoS X) - (/‘*1/"2)_1/2CR2}°

Substituting in (81) and (82), we thus have

(89) I(1s), xi) = 472 (2hm,) >+ ” {015+ 0/ ,— 21,02 (1= cos 1)} 01701y de d cos 6,

(90) I (78, x12) = 47 (2hmp) o+ jj {112 051 + iz 0/ 12+ 2 (1a2) "C? (1= €8 x3)
— (papz) " HCy?} 61570,y de d cos 6,
§7 (C) In the case of J (rs, x12), we have

(91} w’U U7 = (MI/QCO cos A+ uy *Cy, cos 91:)2 (Mllhco cos A—u; "Cy, cos 9,R>2;

in which (¢f. the figure on p. 293) A = ¢,0z, 0 = ¢;,0, 0y = ¢'ROx. In the integration
over the sphere, with respect to 0 and ¢, since 6,, ¢, x;» are constant the triangle
cicrc’n preserves its form, so that we may, if we please, regard x as the variable
point and ¢y, as fixed. Now it may readily be proved, by the method of
“poles” in the theory of harmonic functions, that if A, B, C are three fixed points
on a unit sphere, and P a variable point, then the integral over the spherical

surface of
) cos? PA cos PB cos PC
18
57 (2 cos AB cos AC+ cos BC).
VOL. CCXVI.—A. 2T
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Applying this result to (91), identifying A, B, ¢ with one or more of the points
Cos Cy €'y, and P with z, we may with but little difficulty prove that
/U'12 j‘jj U’12U12 d CcOS OR d(f)o quR = ‘1&577'2 {6122+ 46126/12+GI]22_4M20R2 (912’*‘6/12) (1 — Cos Xl?)
+4p°Cg* (1= cos x12)*

Similarly we fnay show that

M j‘jj U’12 d COS 9]{ CZ(/)O dﬁbli = '§~7r2e/12,
so that
w “‘j U2 (8U"—C2) d cos 0y depy dpp, = 27° {0,7+260,,0",+6,

— 40,047 (0,24 6'12) (1 — €08 x15) +4u°Cy* (1= cos 1)’}
Hence we have

(92) J (”'131; X12) = g’ (thu)rﬂg Jj {6122 + :%‘9128,12 +0',"— 4#201e2(612 + 9/']2) ( 1— cos Xl2)
+ 4:/1,2201{4 (1 — COS X12)2} 6’12S 6121‘ de d CcOoS 60,

and 1t may be proved in a similar manner that

(93) J (7'231: X12) = Zn° (2]“7%)””2 “‘ [M126212‘*‘%6219/12‘*'#219,122

-+ 20112 (l’-mllzem +M211/28’12) {2 (MW?)% (1 — COS Xw) - (1“1/“‘2)-1/2}
+ CR4 {2 (M]Mg)ll? (1 — COS X12> - (IM1M2)—1/2}2] 6’]286217' de d CcoSs 90.

The Expansion of (p°+0°—2ps cos 8)" in o LEGENDRE'S Series.
§7 (D) In order to effect the integration of T and J with respect to e and 6, we must
have recourse to the expansion of

(94) Pn(p, o, COS 0) = (p2+o'2-~2,o0' coS 9)"

in a series of LEGENDRE'S functions. In a recent paper® I have shown that

(95) P,(p, o, cos 8) = 3 (= 1) (2k+1)"A*(%, %) P, (cos ),

k=0
where Py (cos 0) is the ordinary LEGENDRE'S function of cos 6, of type %, andf

k. n

% 1
96 "AR (PP, 6%) = <’_)> > T (n+5)is 26-0 2
( ) (P ag ) o vt (t—i—%‘)t (t-—k)t_k P a

= <Z>k S (n+%)t~k G2t e
p/ =t (t+%) =k s

* CHAPMAN, ‘Quarterly Journal of Mathematics,” p. 16, 1916. The expansion is there not limited to
integral values of n, though these are alone considered in the present paper.
1 The constant % is necessarily a positive integer ; if & > n, A% = 0.
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In the last equation the symbol p,, where ¢ is integral, is defined thus :—
(97) p,=p(p=1)(p=2) ... (p—g+1).
From (58) it is clear that

(98) {61, (cos 0)}" = P, (1 Cy?, mCr’, — cos 0) = > (2k+1) A%, P, (cos ),
- |

I

=

(99) {0, (cos 0)}* = P, (1,C%, u,Cy%, cos ) =

I\

(=1)(2k+1)"A%, P, (cos 6),

k=0
where we have written, for brevity,
(100) nAklz ="A* (/U-l ‘02, ,u2OR2) "Af, =AY (l/-zCoZ,‘,U-lOlf)- )

In our expressions for AQ,, 0 takes the values 6, and ¢, and the variable e
is involved only through the latter angle, which occurs in 6, or ©,,(cos¢,).
In the expansion of the latter (¢f. 98) in terms of P,(cos6,), or, by (48), of
P, (cos 6, cos x;,+sin 6, sin x;, cos ¢), we shall make use of the following well-known
formula in the theory of spherical harmonic functions :

(101) Py (cos 8',) = P, (cos 6, cos x;,+sin 6, sin x,, os ¢)

= P/c (COS 90) Pk (COS X12)+2 é: (k“‘l) !

(k+1)! l ! (12 €.
=1 (k-+1)! P! (cos 0) P! (cos xi,) cos !

The Integration with respect to e and 6,

| §7 (IB) Since the integral of cos le with respect to ¢, between 0 and 2w, is zero unless
=0, from (98) and (101) we deduce the result,

(102) YWG’];‘ de = 27 3 (2k+1)"A%, Py (cos 6,) Py (cos xin)-
- =0

0 k

Now from (89), (90), and (92), (93), it is evident that as far as concerns integration
with respect to ¢ and 6, we have to consider a number of terms such as

(103) | j 0"6' * de d. cos 6,

where 6” may have the suffix 12 or 21, while 6 always has the suffix 12. Now 6~
does not involve ¢, so that (102) suffices for the integration with respect to e, and
leaves us with ‘

(104)  2r | 12 (510 2R01) AP, (05 0)
- k=0

J > (2k +1) *A%, Py (cos 6,) Py (cos Xlz)} d cos 6,
k=0 )
22
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in place of (103); in the first bracket the ambiguous sign is to be + in the case of
0,,”, and — in that of ©,™
By the theory of LucENDRE'S functions we have

(2k+1) r 1Pk (cos 6,) P,(cos 6,) d cos 6, = 0 if k=l

Jo—

(2k+1) jﬂ {P, (cos 6,)}* d cos 6, = 2.
-1

Consequently
(105) ” 0,,"0"," de d cos 6, = 47"”12‘: (2k+1)"Ak,"AR, P, (cos xu),
v k=0
(106) H 0,0/, de d cos 0, = 477%,2(— L)E(2k+1) A%, " A% L P, (cos yuw),
k=0

where the upper limit of £ is the lesser of the two integers m, .
Applying these results to (89), (90), (92), (93), we have, therefore,

107)  T(rs), vio) = 1823 (2um, )r+o+1
( ) ( 191> Xu) 3 ( o)
r+1, 8

+1
2} _{7'+1Ak12SAk]2+TA]”'123+1A_’”'12

k=0

—2uyCP AR AR, (1 —CO8 X]?)} P, (COS X]2)a

(108)  I(rss), xi) = 1w (2ham,) o+

741, 841
> 13 2 k k s v Ak .
2’ (—- ]') I:,(,L /“127+1A 21 SA- 12+1U' /4217A]91 s+1Ak12

k=0 -
+20%," A%, P AR, {(Mlﬂz)% (1 —CO8 Xlz)
""%‘ (/ullu2)“]/2}] P, (COS X12)’

(109) J (’)’181, X12) = '§W3(2]LW/?/U)T+S+2

1:2:25:2 [H PARP AR 3T AR AR AR AR,
— 4, Uy (H TAF AR+ TAklgsHAkm) ( 1 —cos X12)
+ 4/“2204RTA~I£128A,£12 (1 —COS X]2)2:| Pk (COS X12)>
(110) J (7'231a X12) = (Qh?”ﬂo)r““

742, 842

.
k?’o (_ 1)Ic [Mmﬂ- 2Ak21 sAklz+'§'7'+]A.k218+1.A.k]2+ Mger/f21s+2Ak12

+ 202R (Mml'/ﬂHAkm SAklz + /1211/2 TAkzl o 1Akm) {2 (M]M)lh ( L—cos Xlz) - (Mlﬂz) -

+ 04137'A/£218Ak12 {2 (/U-Wz)% (1 —CO8 X12)—(M1M2)~l"2}2] Pk (COS X12)'

}
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The Integration with respect to p.

§7 (F) On referring back to equations (81) to (88) it is clear that before executing
the integration with respect to p, in the calculation of b (rs) and ¢ (rs), we must
subtract from I(rs, ) and J(7s, x,), as given by (107) to (110), their values
corresponding to x;; = 0. Now when x,, = 0, we have

1—cos x = 0, P, (cos yp3) = 1.

Thus where P, (cosx;.,) occurs alone in (107) to (110), it must be replaced by
Py (cos x1,)—1 in the expressions for b (1s) and ¢ (rs), the terms P, (cos x2) (1 —cos ;0)
and P, (cos x.) (1—cos x;2)* remaining unchanged, since the corresponding terms in
I(rs, 0) and J (»s, 0) vanish. '

The variable p is involved in b(rs) and ¢ (rs) only through p dp and x,,, the latter
being also a function of Cy. We may therefore formally execute the integration
with respect to p by writing

(111) ¢"12(Cr) = (2k+1) (up)™" Cye jo {1=P, (cos x1»)} p dp,
(112) ¢"2 (Cr) = (26+1) (papa) ™" Cyy L' (1—cos x1z) Py (cos xu) b dp,
(113) _ ¢ (OR) = (2]“‘ 1) (Mxﬂz)_llg Cy JO (1 —COs X12)2 P, (COS X12) pdp.

The nature of these functions depends on the law of inter-action between molecules
at collisions, and by keeping this law unspecified we retain the utmost generality
in our theory, which implies no property of the molecules save that of spherical
symmetry.

By means of the well-known equation

(114) (B+1) Pryy (cos x)—(2k+1) cos xP; (cos x) +&P,_, (cos x) = 0

the function ¢, (Cy) can be expressed in terms of qﬁklé (Cy), for different values of Z,
as follows :— :
(115) 4 (C) = g 9 (O = 4 (C) + 7 97 ()
12 R zk + 3 12 R . 12 R 2k_ 1 12 R/>
and by a repeated application of (114) we may obtain a similar expression (involving
¢he (Cp) for I =k, k+1, k+2) for ¢, (Cy).
To avoid unnecessary formule, we shall not write down the forms taken by b (rs)

and ¢ (rs) on substitution of the results of this section till after we have considered
the.next step in the integration,
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The Integration with respect to Gy and Cy.

§7 (G) In the vexpressions for b (7s) and ¢ (rs), integrated out with respect to all the
variables save C, and Cy, it is now convenient to make the transformation

(116) | 2° = hm,CJ2, y? = hiny,C2

In connection with this we shall use the following notation :—

(117) B0 (m’ n) = (2hmo)m+nmAklznAklz = (2}“7%)7”” AF (M1002; M20R2)- A (#10027 M2ORZ)
= "AF (2u i, Cly 2uahmyCr?) . "AF (b, C, 2palim, Cyl),
= "A" (2M1x2; 2/42?/2) A (2/11-’1’2; 2/12!/2)3

(1 18) Bkmm (m’ 7&) — (2}80’)’&0)7"'“1 . mAkm nAkm,
= "A* (2//-23’52» 2#1?/9) AR (2/11-%‘27 2/12?/2)-

We have here used the fact—cf. (96)—(100)—that "A*(p? o°) is a homogeneous

polynomial of degree 21 in p, o. ’

We now use equations (88), (84), (107), (108), in conjunction with §7 (I), to

write down the following expressions® for b (7, s), taking particular note of the signs
of the various terms :—

741, $+1 N )
(119) Dyy (1) = L8 Vlvzjj e~ 3 (b (may) { B (r+ 1, 8)+ B (r, s+1)}
k=0

+ Ay’ ¢™ s (i) B (1, 8) e 2%y die dy,

741, 8+1
(120) bxz (0"281) — _lgﬁ_vlej e Y (___1)/L-l}i)klz(_r]?y‘){m;/?Bk(,1/.+1,8)
=0 .
—2 (uypm) Py BE (1, 8) 4P B (7, 5 +1)
— 4 (wipez) "y ™12 (m10y) BE (1, 8) Lonse @ diw dy.
In a similar way, from (87),- 88), (109), (110) we obtain the following expressions

for ¢ (r, ) :—

"

’ P2, 842
(121) 012(7.181) = ?’;Vlyzjj‘e*(zzz-'-y% 2 [SbklZ (’Tlgy) {B/L (7"{' 2’ 8) + ?{BK’ (/r"l" 1, S + ].)
k=0
' + B (ry, s+2)} + 8utfp s (miay) { B (r+ 1, )
+B(r, s+ 1)} =16y 9" (7'12'!/) B (r, §) hone*y” daz dy.
* In (119)—~(122) the suffixes 1212 or 2112, which should be appended to the symbols B% (m, n)—the

same for all those within any one square bracket—are for convenience of printing indicated only by
being placed after the bracket itself.
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r+2, s+2
(122) 612 (7‘281) = ’g ViVo jj 6_(z2+y2) E (“" 1 )IL [¢k12 (T]gy) {M]2Bk (/r+ 2, 8) +‘?}Bk (r"l“ 1, S + ].)

k=0
+un B (7", S+ 2) —4 (.Mll’-z)_llz Yy <M12%Bk (7' +1, 5')
+ugr "B (7, s+1 )> + 4y B @, 8)}
—8 (M,‘Az)l/2 3/2 ¢’k12 (T 12?/) {Mlz%Bk (’I‘ +1, 8)
-9 (/"'1”2)_1/2?/2 Bk (/r, 8) +//«211/2Bk (74, S+ 1)}
- 16#1#27J4¢,/k12 (7'12?/) B (7" $ ) e a’y® da dy.

The symbol = in ¢*, (r..y) is defined by the equation

1
123 = .
(123) 2 v hmy,

The integration with respect to « in the above expressions is of a quite elementary
nature, but it will not be executed in general terms owing to the complexity of the
polynomials B* (7, s), which are integral in «°. Any individual term in the integrands
of (119) to (122) is of the form (so far as concerns x)

(124) - j‘o e_z2w2(m'+1) dm = 71‘7['1/3 (m+%)m'

The ihtegration with respect to y will similarly not be executed in general ; in any
case, owing to the unspecified functions ¢, (ry), this integration could be only
formally completed, and until we come to consider special types of molecular models
we shall be content to leave b (r, s) and ¢ (r, s) in the above form.

The Complete Expression for A,Q,.

§7 (H) On referring back to §7 (A), and the definition of b (r, s), ¢ (7, s), it is clear
that we are now able to write down the complete expressions for A,,Q, in the two cases
we have considered. This involves taking into account «// the terms (7 = 0 to «) in
F (U, V, W), with their appropriate coefficients, as in (78), (80); and in order tc
make the expressions more symmetrical, it is convenient to change the values of Q,
slightly, by multiplying them by certain numerical factors (¢f. 26, 30). Thus
writing

(125) oot st = 1

1.8.5...(2r+8)7r.1.3.5...(25+3) s’

1
1.3.5...(2r+5).1.8.5...(2s+5)’

(126) N, =
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we have the following equations for A.,Q, in the two cases under consideration :—

(2hm, )**? 10T =

(127) 1.3.5 (25‘+3)8A12U1012S = BoT o 240>\, 15— 1{61 1, 1b (7"131)+M12ll2/8r—1,2612(7'231)}:
2 ) s+1 ] », )
(128) 1 3( SM1")(28+5) ALUACH = Cyeny %Oyrs{')’r,lclz (7‘1-5’1)‘1”%-,2012 ('rzsl)}-

The corresponding values of A;Q; in the two cases are obtainable from (127), (128)
by replacing the suffix 2 by 1 throughout. We will write by (r1s1) and ¢ (18:)
respectively for the values taken by by, (7181) + 0,5 (18,) and ey, (718,) + ¢y, (1758,) when the
distinetion between the suffixes 2 and 1 in these expressions is abolished. In place of
i and w, we now write &, and = wy = 1, m, = 2m,, while B*,(m, n) and
B, (m, n) become identical, and equal to

(129) AR, o) AR (o, o) = B (m, n).

Tt is convenient to express by, (7151) and ¢y (7181) in terms of ¢, (+y) only, eliminating
¢ (ry) and ¢, (vy) by means of (115) and a similar equation for ¢, (ry). When
this is done it is found that the coefficient of ¢%, (vy) vanishes for odd values of %, on
account of the factor (—1) in by, (7s;) and ¢, (7s;). The following are the results
thus obtained® :— '

(r,s)
130 1)11 78,) = 33'41/12 e—(zuyz) Z zku Y B* e 1,8 +B2k ')",S—i—l
o

2k+ 1 pars1 2k _— o) }] -
2y {47c+1B (r,5) + 4h+1 B (7, 5)=B"(r,s) ¢ |« da dy.

) 8] B
(181) ¢y (ms1) = 2607 j je-““”z) > o™ (Tuy) LB%(T +2,5)+2B%(r4+ 1,5+ 1)+ B*(r, s +2)
=1

2k+1 /o P2l (L o >
+4y° {470 1(B (r+1,8)+B*+ (1, s+1)

+45f1<B2’ 4 1,)+ BE(r s+1)>-—<B2"(7'+1,s)+Bz’”'(7',s+1)>}
e e e e

! <(4ki2§)?il)c+ 1) @k S]Zk—l) + 1) B (r, 5)

" (47?4]f 3724761) )

_ 2]C+1 %41 . ]C 2/ —1 }] 2,2 7,
2<4L+1B (7, 8)+ 7 1B (rs)> 2y da dy.

* In these expressions $¥y (r11y) is the equivalent, for an encounter between two molecules of the sume
kind, of ¢Fsy (r11) for molecules of different kinds. Thus (¢f. 111)

o (ruuy) = 2 (2% +1) O f {1 Py (eos xa) b

where the law connecting x11 with p and Cp may differ from that for xi2. Also 711 now becomes (2hm,) 7.
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The term corresponding to &k = 0 is absent in both the above cases, since ¢’u (Tuy)
is itself zero, so that ¢%; (ruy) is the function ¢y (ruy) of lowest order (k = 2) in
bi (7181) or ey (ms1). The upper limit of % in the case of by (rs:) is equal to the
integral part of the lesser of the two quantities & (r+1) and % (s+1); this is denoted
by (7, s). Similarly the upper limit of % in the case of ¢y (718:) is the integral part
of the lesser of the two quantities 4 (#+2) and %(s+2), which we denote by [, s].
Thus, when » = 0 or s = 0, by, (18:) = 0.

We can now write down the complete expressions for AQ, in the two cases above,
as follows :—

1 (2hm, )*+1 .
(182) 575 (257 3)s AUC
1 aT Yy
= B, T 8 Apot,5-1 [18':'—1, 1 {bu (’7'131) +by, (7”131)} + m2 :87-—1,2[)12 (”'231)]a
. s+1 ®
(183) 1 3<25}Wh)(28+ 5) AUPC® = Cyen §07\’n [y {on (ms1) + 0 (7181)} +742010(7581) ]

In the present paper we are concerned with the application of these formulse only
to simple gases, in which v, = 0 and hence by, (718,) = by (758,) = €15 (7181) = 15 (7:8,) = 0.
Tt is convenient to write the reduced equations in the following form :—

2hm)°+? 19T &
{134 ( O2(s+1) 4+ X 2{ )
(134) 1.3.5. (23+5)(3+1)u AU T 3, 2 el
(135) (2hm)? ——AU2O2‘ o Sy,

. =0

1.3.5...(25+5) 2v

In (184) we have substituted »+1, s+1 for =, s in (132), multiplied by 3/», and
used the notation given by

(136) bn S £3_]307\':',sb11 (7'+1’S+1);
v

the first term in (132), with factor ,8_1, vanishes, since by (0, s) = 0. Similarly in
(185) we have written

(137) - Cps = 45 O())\ #sC11 (”'131).

§ 8. Tue ExPRESSIONS FOR THE COEFFICIENTS IN THE VELOCITY-
DistriBurioN FuNCTIONS.

§8 (A) We have now obtained expressions for AQ, the rate of change of a function
of the molecular velocities due to encounters, in two different ways: in § 3 AQ was
found from the equation of transfer, while in §§ 4-7 it has been determined by direct
calculation. By comparison of (26) and (134)—substituting s+1 for s in the former
—and of (80), (72) and (135), we deduce from these different expressions for AQ the

VOL. CCXVI.—A. . 2 U
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following linear equations connecting the unknown coeflicients in the velocity-
distribution funetion :—

(138) % Brbrs = 1)

(139) S ye, =1,

These are true for all values of s from 0 to o, the coeflicients b,, and c,, being
completely determined, in terms of the molecular data, by (180), (181),* and (136),
(187). If we assume that certain convergency conditions are satisfied (138) and (139)
lead (in the way usual in the case of a finite system of linear equations) to the following
expressions for 8, and vy, :—

(140) Br = V'r (brs)/v (brs)! Vr = vr (crs)/v (C”),

where V (b,,) and V (c,,) denote the infinite determinants formed from the arrays (b,,)
and (c,,), thus, '

(141) v (brs) = by by by by .. \ (Crs) =] Cop Cu Cxn Cy
by by by by . . Can Cu Ca Cy
bie bip by by . . Cop Ciz Cyp Ca
by by by e .. Coz3 Ci3 Co3 Csg

and V, (b,,), V. (c,) denote. the determinants obtained by replacing each element of
column (r) in V (b,,) and V (c,,) respectively by unity.

The General Expression for the Velocity Distribution Function.

§ 8 (B) This completes our solution of the fundamental problem of this paper, 7.e.,
the determination of the velocity-distribution function for a “nearly perfect ” simple
gas, composed of monatomic molecules of the most general type, and which is slightly
non-uniform as regards temperature and mass-velocity. The solution will be sum-

marized as follows (¢f. (10), (78)) :—
3y
(142) f(U,V,W) = @—m) g UtV
™
B A (gL v W 5 (2hm) o
{1 By T <U etV oy W 8z>r%o 1.3.5...(27'—%3)7"8"“IC

-G, (2]””) (011U2 + €35V + c3aW? + VW + e WU + ¢;,U V)

- (th)r 2,}
=, 1.3.5...(2r+5) M

* The suffix 1 throughout these equations may now be omitted.
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where ¢y, ¢, &c., are given by (72). The coefficients 8, and v,, for 7 = 0 to r = o,
are given by (140), where (cf. (186), (137), (130), (131)),

[r, 8]
(143) b,, = 32By,, He-@’w’z’ 3 g (Ty)[B% (P42, s4+1)+B% (r+1,5+2)
=1 -
o [2k+1 2k
2 2{ B2k+l 2k—1
2 T (r+1,8+1)+ 4—k+1B (r+1,s+1)
_B2"(4"+1,s+1)}]x2y2dmoly,

[r,s]
(144) ¢, = 7200117\',‘5]]6“(12'*”2) = ¢% (ry) [B% (r+2,8)+&B* (r+1,s+1)+B*(r, s +2)
k=1

+4g° {—-—«270+ L <B2’“’1 (r+1,8)+B* (r, s+ 1)>

4k+1

+ ZI—GZ—_ZG_—I<B2"—‘(9~+ 1,8)+B2k'1(7',8—1)> —_ <B2k(,,-+ 1,5)+B%(r, s+ 1)>}
e -

* <(4ki2;c)-zi])c"’+ 1) " @kt 14376(24lc—— Tt 1> B*(r, )

ok (2k—1)
(4h+1) (4k—1)

_ 2k+1 nain 2k 2% —1 )}] 2 9
2<4————k+1B + (r,s)+4——k+1B (7, 8) )¢ |2% da dy

+ B#-2(r, s)

where (cf. (123))

(145) ‘ 7 = (2hm)~"k,

and, by (111),

(146) % (2) = 2(4lc+1)zj:{1;1>2k(cos x)pdp,

where P, (cos x) is the usual LEGENDRE'S coefficient, and x is a function ot p and 2z
which depends (§4 (D)) on the law of inter-action between two molecules at an
encounter. The factors A,, and A, are defined by (125), (126), while the functions
B’ (r, s), which are integral polynomials in & and y, with merely numerical coefficients,
are defined by (129) and (96). In the upper limit of %, [r, s] denotes the integral
part of the lesser of the two quantities 3741, §s+1.

The factors B, C, are, as yet, arbitrary; we now assign to them the values
determined by the equations

(147) by = 1, Co = 1.

This makes B, and C, each equal to »~! multiplied into a function of (2%m), t.e., of
‘ 202
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the absolute temperature. The elements b,,, c,, and the coefficients ,, v, then become
functions of the temperature only.
The coefficient 8_, is not determined by the above equations, but is given (¢f. (75)) by

(148) 8= — 2 BJ(r+1)

Properties of the Determinants V (b,,), V (C,).
§8 (C) On inspection of (143) and (144) it is evident that
(149) brs = b,, G = Coy

so that V (b,,) and V (c,,) are symmetrical determinants.

In expression (143) for b,,, the variables of integration,  and g, are never negative,
so that (cf. (129), (96)) "A% *A* and B*(r, s) are essentially positive (or zero) for all
integral values of 7, s, and % ; further, since P, (cos x) never exceeds unity, ¢* (y) is
also always positive. It is evident, therefore, that b, must be essentially positive
if this can be proved true of '

(150) B#(r+2, s+1)=2*B* (r+1, s+1)+B*(r+1, s+2).
Now
(151) B2* (,',.+2’ 8+1)—y232k (”'+ 1, s+ 1) = StLA2k [7‘+2A2k__y2r+lA2k]

%[ r+2 5 7+1 3
— SHLAZ Q> [ > (r+2) (r+5)i o o, 2= _ % (r+1), (7480 2(r+2~t>:‘
<m D, Gt T T A D, e S

— s+1 A2 g o r+2 (’i”+1>t—1 (’i"‘l‘%‘)t~2/':~1 9,2 (1t 25 1) 9_ _9 a
A <ac> o (t+3), (t—20)! Y {(r+2—1) (t—=2k)+t (r+3)},

every term of which is positive. Interchanging » and s in (151), and adding the result
to the latter, we obtain (150), which, with b,, also, in consequence, is essentially
positive. »

From (151), moreover, it is clear that the numerical coefficients in (151) or (150)
increase with » or s, and the same is readily seen to hold good also in the case of
Bi(r, s). As 7 or s increases, therefore, the numerical coefficients and the degree
(in « and y) of the integrand of (148) increase, while if both » and s increase, new
positive terms are added to the integrand. Hence, provided that the functions
¢* (ty) satisfy certain simple conditions,* b, steadily increases with » or s, and the
consideration of even a single term of (151) or the integrand of (143) shows that this
increase is without limit, .e., b,, tends steadily to infinity with » or s.

* It is easy to see that the increase with y of $% (ry) is less rapid than that of y; if % (ry) is constant
or steadily increases, though less rapidly than ¢, b, will steadily increase with » or s. But much less
restrictive conditions might be devised, e.g., if $% (ry) decreases like 71, the above result still holds good.
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I have little doubt that, with rather more trouble, ¢, could be shown to share the
above properties of b,,, but I have not made any serious attempt to prove this; from
the numerical calculations in § 10 (A) it appears probable that the increase of ¢,, with
7, s 1s more rapid than that of b, ‘

Properties of the First Row or Column of V (b,,) and V ().

§8 (D) The numerical values of b,, and c,, obtained in § 10 suggest that many
further general properties of these elements might be determined, with sufficient
trouble, and that the convergence of the determinants V (b,,) and V (c,,) might thus
be demonstrated. Owing to the considerable algebraic difficulties involved, however,
I have so far made little progress towards the proof of such properties, except for

the case when #» or s is zero, 7.e., for the elements of the first row or column of
V (b,) and V (¢,). It will be shown that

(152) bro = bOr = Cpp = Cop

for all values of r.
This will be proved as a particular case of the more general result that

(1524) (s4+1) b, (k) = c,; (k) when the lesser of » and s is even, and & = [, s],

where b,,(k), c,; (k) denote the parts of b,, and ¢, respectively which are due to a
particular value of % in (143), (144), while [r, s] denotes the upper limit of %, as usual,
ie., b =4r+1 or ts+1, whichever is the less. Thus if we suppose that »=s, and
that s is even, (1524) takes the form )

(153) (s+1)b,,(3s+1) = ¢, (¥s+1).

When s = 0, this value of % is unity, and b,,(1), ¢, (1), which usually form only
a part of b,, c,, become the whole, so that (152) is the particular case of (153)
corresponding to this value of s.

Since B*(r, s) is zero when either » or s is less than %, some of the terms in
b, (3s+1), ¢,, (3s4+1) vanish. In fact, as may readily be seen from (143), (144), we
have '

(158) B (3s+1) = 82B, [ g2 () [ B2 (41, 5+2)

+ ~————~22(§:::§) B (r+1, s+ 1)} xy? dax dy,
(155) ¢, (hs+1) = 72040, j je-@”%s“ (r3)) {B“Z (r, s+2) + %%{—?—)ymsﬂ (r, s+1)

4(s+1)(s+2) s 2 2
* (22:3))((2315) yB(r, 9) } vy dody
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From (96) it is easy to see that

i k!
(150 e = R
so that
(157) B, s2) - 2R g oy, )

— (s+2)! & (r+1) (r+8) s lw2ty2(r+s+3 0.
(5+8)ss t=om (L+5), (t—s—1)!

By putting = in place of (r+1) in (157), and adding {2 (s+2)9°/(2s+5)} times a
similar expression in which 7, s replace »+1, s+1 in (157), we also have

(158) Bs+2(¢,s+2)+%§—)y2Bs“(r s+1)+(2(f31)>(<238:25>) yB (r, 5)

(s+2)! & re (P8, a 20ro43-1)
= > x
(54 Dhs s (040 E=s)1 7

We now substitute the expressions on the left of (157) and (158) into (154) and
(155), and integrate with respect to # by means of the well-known formula
(159) J| et de = g 4
we thus obtain the equations

: : v 2! D)8 -
160) b,,(3s+1) = 8Bpr'm j Vs +2 (s+ > ¢ 2izs=1 245 +4=0) o,
( ) (28 ) VT TN | € ¢ (Ty) (3+%>s+2 sl (t S— 1) Yy Y

1 2 2) ! o’ (’)" +"i) . ( —1)
161) ¢, (ks+1) = 18C,pr\/ J 4543 (s+ > T 2)t=s aras3=d
( ) ¢ (28 ) v rs | € ¢ (Ty) (3‘*‘%)”2 s (t___s)y Y Y
or, changing the notation so as to make the lower limit of ¢ zero, and inserting the
values of \,, X,, according to (125), (126), ¢.e.,

9~ (rts+4) 9~ (rts+d

!

5 H >\ rs — )
(r+1) (s+1) (P +3)r o (s+3)sre (745 )rs2 (S +H5)sse

( 1 62) >\TS =
we have

(163) b, (Ls+1)

= 9~(r+s+D) RA 2 (3+2) j—y"’ 42 S‘f C, (r+58),20+3-0 g
? B (8—1-1)(7"!-2)”2 {(84-2)s+2}‘J ¢ (Ty)t=or—S t(qn Z)ty ¥

(164) ¢, (—5~3+A1)

! r—$
=9, 2-ts+d( ypth T (s+2)! j — g5 > 0 (r45), 20 dy.
oV (rt5)res 15+ 2 )seal” eV () 2 S8y Y
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The ratio of these two expressions is given by

bs(B5+1) _ A
s (3s+1)  s+1°

where A is a quantity independent of = and s. When s = 0, as we have seen,
b, (4s+1) and c,, ($s+1) become identical with b,, and c,, respectively. Hence

ba

cro

= A,

and since B, and C, have been chosen so that b,, = 1, ¢,, = 1, the value of A must be
unity. Hence, when s is even and » = s,

(s+1) b, (3s+1) = ¢, (3s+1),

with the consequence that
. by = ¢y
as a special case.
Tt is convenient to introduce the notation

(165) e () 429 dy = 4 DKo

so that if ¢*(ry) had the value unity, the value of K,,_z ; would also be unity, by
(159). In terms of this notation (163) and (164) may be written as follows : —

r,  (s+2)! 73
s E 0 K )
s+1 {(3+%)s+2}2t=0r_8 thr—s—tus+ D

(166) b, (3s+1) = 2=+t By

s+2)! 7S
( ) > ,._sCtKr—s—t.%SH'

167 e (Bs+1) = 9. 2-0+s+9 e, S T2/
( ) (2 ) (4 {(S—f—%)s”}:%t:o

By writing ¢t = r—s—¢' it 18 evident that

r—s8 r—8

(168) or—sCtKr—s~t,%s+1 = , Or—sOth, i1

t=

By giving to » and s in (166), (167) the value zero, we have
(169) by = z85BprK, 1, e = 250Ky,

whence, remembering that (¢f. (147)) B, and C, are so defined as to make b,, and ¢,
each equal to unity, we have

1
TVKO, N

1

B, = 225
(170) ) 2 KL

B, = {C,.

B
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318 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

We will substitute these values into (166), (167), and write s = 0, in order to obtain
expressions for b,, and c¢,, as follows :—

(171) brO = bOr = Cpp = Cyp = ’Cr/'fo,
where we have written
(172) K, =272 CK,,

so that

16

(173) Ky = K0,1 = 1571_1/

j e 9" (ry) o dy.

It is of interest to examine also the »™ successive difference of b,, or ¢,,, which we
shall denote by 4,0,y or d,,¢,,, We have

(174) of (r) = f(r)=,Cof (r=1)+,Co f (r—2) -
Then, from (172), it is easy to see that

SrOKr = 2——7‘ 72 (_Z)nlrom I"—ZW r—mOth,l

m=0

=27 EOKtIZ( )rtCm

m=0

= (=2)" = (=1,0K,,,
t=0

since

S (=2)_ Gy = (1—2) = (= 1)
m=0
Hence
(175) Srobro = 3rocro = (""2)_T (KO)—ltE) ("‘UtrGth-

Similarly the #** difference of
2~—Tq,.s 2 r—sOth, Hos 419

t=0

which is the part of b,,(§s+1) or ¢, (4s+1) which depends on # (s being even and
r=s) is equal to

("— 1)“-3 éﬁ é ( )t r—sOth. Tos+1¢

Symmetrical Expressions for > B, and s Ve
=0 r=0

§8 (E) While V(b,) and V(c,) are symmetrical, the derived determinants
V. (by), V. (c,;) are necessarily lacking in symmetry, and our expressions for 8, and y,,
when we attempt to make successive numerical approximations to their values
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for particular types of molecular models (¢f. §10), appear not to converge at all
rapidly. Fortunately, in our applications of the velocity-distribution function to the
theory of viscosity and thermal conductivity, we need to know not the individual

values of the B's and s, but onIy the sums 3 8, and 3 y,; for these it is possible
’ r=0 r=0

to determine symmetrical expressions which are found, in practice, to be highly
convergent.

In what follows we shall use the symbol 4, placed before a function of the
integral variables », s (such as b,, or ¢,,) to denote the (m, n)" successive difference
of this function with respect to » and s respectively. Thus

Smof(’)", 8) =f(')", 3)_n301f(7'_19S)+m02f(/r—2> 8)""'
30nf(’}", S) :f(7'7 S)—n01f<7"3 3"'1)+ n02f(7", 3_2)_'“

Snmf(,ra 8) = mOf(r: S)—nol 3771,0f(/r7 S$— 1)+no2 Sm(),f(ra 3—2)—“ [N
= 30nf(,r> 8)—m01 SOnf (’l"— 17 3) +mC2 SOnf(/r'—z, 8)—‘ see

When we substitute b,, or ¢, for f(r,s)in the above formal expressions, any term
with a negative suffix is to be omitted as being zero.

Since the value of a determinant is unaltered by subtracting from the elements ot
any one row or column the corresponding elements of any other row or column, and
since this process can be repeated indefinitely often, it is clear that from (141), by
subtracting the (s—1)" row from the s'*, for all values of s from 1 onwards, we have*

(176) \4 (brs) =V (801brs>’ \ (0¥s) =V (301Crs)'

The same process applied to V,(b,), V,(c,) leads to determinants identical with
V (8uubys) and V (,c,,) respectively, save that in the #™ column -all the elements are
zero except the one in the first row, which is unity. Evidently, therefore, V, (b,,)
and V, (c,,) are the " minors of determinants which are respectively identical with
V (8b,,) and V (dye,,), except that in each case all the elements of the first row have

the value unity. Consequently the sums s Vv, (b,,) and > V,(c,;) are equal to the
r=0 r=0

sums of the minors of the two determinants just described, 7.e., they are equal to
these determinants themselves. Thus, by (140),

(177) r§0 v8r - v (801brs) ’ ¢§0 Vr \Y (301073) >

where we have

(178) V=1, doy=1, (s=0tow), ¥,=b,, c,=c¢, (s=0tow, r=1tox).

* When s = 0, 8 should be replaced by 8.
VOL. CCXVI.—A. 2 X
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320 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

To the above determinants we now apply the same process of differencing by columns
which has already been applied by rows, and we thus obtain the equations

2 o V(b)) S o = V()
(179) r2='0/87‘ N \% (31167'3) ’ "%0 [ \ (31]07“8) .

The determinants V (8,,0/,,) and V (3,;0,,) are identical save in their first rows; all the
elements of the first row of the former are zero save the first, which is unity. Hence
V(8,b,,) is equal to the principal minor of V (8,b,); we shall denote it by
V' (8ub,,). Hence, and with a similar notation for the principal minor of V (3;c,),
we have*

» / @B !
2:: ,8 _ v (31167«5) 7.?0 Ve = %_(Sucrs)

0 T \% (81167,.3) ’ (81167's5

7

All these determinants have now regained a symmetrical form.

It is convenient, partly for the sake of elegance, and also because it imparts a
highly convergent form to the elements of our determinants (¢f. § 10) to continue
this process of differencing still further, as follows. We repeat the whole of the
above operation of differencing by rows and columns an indefinite number of times,
beginning now at the second row and column (thus leaving unchanged the values
both of V and its principal minor), and afterwards successively at the next later row
and column than on the previous occasion. The general element thus becomes 8,0,
or d,.,, and we have

S B, = L duby) = o i
(180). Zh=5 b 0TV (Bte) ?

where the dash (') denotes the principal minor of the corresponding determinant.
These expressions could, of course, have been obtained directly by a re-arrangement
of the original equations of transfer, but it seems preferable to use the latter in the
more simple, natural forms chosen, and to make this transformation by differencing
in relation to the determinants formed by the elements b

78 CTS'

§9. CoNSIDERATION OF PARTICULAR MOLECULAR MODELS.

§9 (A) While, as we have seen, certain general properties of the elements b,,, ¢,, can
be demonstrated without the assumption of any property of the molecules save
spherical symmetry, it is possible to carry our investigations much further when we
represent the molecules by particular models of simple type, such as point centres of
force, or rigid elastic spheres. This involves, primarily, the examination of the
functions ¢* (ry).

* When 7 or s is zero, the corresponding suffix of 8;; should also be written as zero.
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Molecules which are Point Centres of Force varying as r=".

§9 (B) When the molecules are point centres of force varying inversely as the n
power of the distance, the angle x in the expression (146)—cf. § 4 (D)—is given by
the following integral® :—

(181) X =2 f[l—ng— (nfe) =] dy.

Here s, is the least positive root of the equation [1—*— (y/a)*"*] = 0, and « is a
multiple of p, thus,

1 1
—1 \n—1 2 —1\n—1 , 2
() - () o =p ()0

where K is a constant which measures the intensity of force between two molecules
at unit distance. Hence (¢f. (111))

2

(183) ¢% (ry) = 2 (4k+1) <;LKﬂ1>”_IORl—ﬁ j {1—=P, (cos )} e da
- 0
Ko o/ 4 \ios =
n-1 2 (n—1
= 2(4k+1)<%£—n—1-> <2?}/z,m> L {1=Py (cos x)} a de
n—>5s
_ y? \2 (n—1)
=l <2hm) ’

where ,A, is a constant depending on n and &, but not on y or A (i.e., not on the
absolute temperature).

When this value of ¢¥ (ry) is substituted in our expressions for b, and ¢, it
becomes possible to execute the integration with respect both to « and to y in terms
of gamma-functions. Thus (¢f. (165))

188) [ er ) o dy = A et D Ko
0
) n—>s
| \TOED (7 ot
== A_ *—) j 4 n—1 d
" "<2hm, 06 Y Yy
1 'n—5) 2 »
2(n—1
LA (mt2— __>
2 ]°<2hm> | <m+ n—1/)’
so that
n—5
B 1 \2@-D 9
(185) =Ky = S kA, <2hm> P<4— m>

* (f. § 14, p. 454, of my former memoir, ¢ Phil. Trans.,” A, vol. 211 (1911). The V, of the formula
there given is the relative velocity of two molecules, which in our notation is (papa) 2Cy, = 2Cy when the
gas is simple.

2 x 2
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322 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

and s i <t—l—3— 2 > .
) 1 2 (n—1) 2 n—1

186) K,, =2+ < > 5) -1 < _ >= K

(186) 1= 277 A ST {(t+8)ey " T (244 m—1 +3), Ky,

Hence the values assumed by B, and C, in this special case are as follows (¢f.
(170), § 8 (D)) :—
157 (Zk’””')}lﬂ:—'}? ¢ =370 (27lm)ll2%—j
) =

7

32 ak AT <4-—- n31> v 8 ak AT (4— 7_2,-—2—1> v

(187) B, =

From (186) we have
by = € = ryfiy = 27" 2 rCth/KOJ
t=0

in the notation of the hypergeometric function. It may hence be shown, without
much difficulty, that (if » > 5) b,, and ¢,, steadily increase to infinity with », the

n—>

rate of increase being comparable with that of »»-1.

Since the functions ¢* (ry) all depend on % in the same way, it is clear that, with
the above values of B, and C,, the eleménts b,, and c¢,, and consequently, also, the
coefficients B8, and v, in the velocity-distribution function for molecules of this type,
are independent of 7, ¢.c., they are independent of temperature. They are, indeed,
pure numbers, depending only on the molecular mass and on the force constant of the
molecules. . v

It is of interest to determine the value of the elements 8,b,, (or &,.c,) of the outer
row or column of V (3,,b,,), in this special case. We have, by (175),

31'061'0 = 81'007‘0 = (_2)—r

t

I M

( —1 )t rOt K-t, 1/K0, 15

0

. . <t+3——n21>
= (=2)" > (—1)le)  n—l)
(=2)7 2 (=1)] )

= (—=2)" | —9p _____2_17 )
= (-2) 1*< r, 4 n_l,g,]_),

b

I\/h

in the notation of hypergeometric functions, or, in terms of gamma-functions,

L) <¢—%+ . 1> <9"—%+ —“—31>
(188) 81‘02)1‘0 = 0,0Crp = (—2)—7‘ 5 n—l W.
7 A1 !
I‘(’I"-I— 2) I <n_1 2>

= (~2)”
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As 7 tends to infinity, the last expression tends to zero more quickly that

2—r7a" (4— n_Q_'I)

>

and also it is alternately of positive and negative sign, after the first two terms
(both 8,,b,, and &by, being positive).

Maaxwellian Molecules: n = 5.

§9 (C) It is now easy to see what are the special properties of the fifth-power law
(n = 5), the law obeyed by the molecules which we term Maxwellian, which enabled
MAXWELL to work out the theory on this hypothesis with such great simplicity and
accuracy. When n = 5, we have from (186)

(189) K1 =54,
which is independent of ¢. Hence, by (170), (171), (172),

(190) Kt, 1= Ko, 1= 5A1; Kk, = 27" Cth,1 = 2”’K0,1t§0,0t = Ko,l = Ko, brO =cCo=1;

”
r
t=0

(191) 80D, 0= 3000, =(—2)" (=2)"(1=1)y" =0, (r>0);

I M=
|
Naw
o
Il

(192) Bo = g%ﬁ (V5A1)_1a Co =25 (VsAl)»_l-

From (191) and the equation by, = ¢, = 1 we deduce that in this case the principal
minors of V (3,,b,,) and V (é,.¢,,) are equal to these determinants themselves, .e.,

(193) > B, =1, > v, =1 (Maxwellian molecules),
’ r=0 = .

T

while from (190) it appears that all the elements of the first row and column of
V (b,) and V (c,) are unity. Hence in V,(b,) and V,(c,) the first column and
column (7) are identical, so that we have

(194) V(b)) =0, V.(e)=0, 7>0

’ (Maxwellian molecules),
(195) V(b)) =V (o), Volen) =V(c)
whence also, by (140), we have
(196) By =1, vo = 1, B, = v, = 0, (r>0)  (Maxwellian molecules),
and also, by (148),

(197) B, =—-B=-1 (Maxwellian molecules).
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324 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

In the case of molecules which obey the fifth-power law, therefore, the velocity
distribution function has the simple finite form (cf. (142))

3o
(198) f(U, V, W) = <@> e"h771(02+v2+w2)

T

oT
[ (VE,A)I{-U»-%< 2T+vé—?;+w )( 1+ 12hmC?)

+5 (20m) (e, U+ ooV + CasW? + 2¢5VW + 205, WU + 2¢,,U V)H

(Maxwellian molecules),

where C* = U+ V*+W?, ¢y, ¢y, &c., are given by (72), and (¢f. (1883))

(199) A, = 10 (1Km)" j:{1_P2 (cos )} ada = 3% (Km)™ rsirfx.ada.

0

MaxwrLL* calculated the value of the integral J.wsinzx .ada, the forces being
0

repulsive, by numerical quadrature, and found that
T j sin’® y . ado = 1°3682,
0
so that, for repulsive forces proportional to the inverse fifth power of the distance

(200) A = ;5 1:3682 (Km)'™",

where Km? is the force between two molecules at unit distance.

Molecules which are Rigid Elastic Spheres.

§9 (D) We next consider molecules which behave at encounter like rigid elastic
spheres of radius ¢. This particular molecular model has been more used than any
other, in researches on the kinetic theory, on account of its simplicity and concreteness,
which aid the imagination in following or constructing *descriptive” theories of
gaseous phenomena. As regards the analytical development of the theory, also, it is
probably the simplest case after that of Maxwellian molecules. The difference
between the two models in this respect is, however, enormous, the rigid elastic
spherical molecule requiring the infinity of terms fB,, y, in the velocity-distribution
function, just as in the case of the most general molecular model. The comparative
simplicity of the present model lies in the moderately tractable expressions for b, ¢,
to which it leads. Apart from the methods of the present and my former paper,

)

* MAXWELL, ‘Collected Papers,’ ii, p. 42. His constant A, equals 77"‘- sin? x . ada in our notation.
0
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however, it has not been found possible in the past to obtain any close numerical
accuracy in calculations based on this molecular model, the errors resulting in previous
theories (although these have been carefully constructed and closely scrutinized)
ranging from 10 to 50 per cent. (cf. § 11 (F)).
- It is readily seen® that in the present case
(201) ‘ x=0._(p>20) sin 3y = p[2c  (p=20)
so that

pdp = 26” sin &y cos x dx = o’ sin x dx = —¢” d cos x.

As p ranges from 0 to 2, x ranges from 0 to 27, and — cos x from —1 to 1.

Hence (cf. (111))
(202) 7% () = 2 (4h+1) Cpo j (1=Py (cos x)} d cos
— 4 (4h+1) 0" (2hm)-"y,

1
since J P, () du = 0. Hence ¢* (ry) depends on % only as regards the numerical
1 .

factor (4k+1), and the present case is, analytically, the same as that considered in
§ 8 (B) if we write (¢ (183)) '

(203) Z“i:r{, or n=ow, and ,A,=4(4k+1)c*

We may therefore quote from the formule of § 8 (B) as follows without further
discussion :—

(204) It (m+3), Koo r = 2 (4k+1) 6° (2hm) T (m +2)
= 2(4k+1) (m+1) 16" (2hm)~",

(205) = Ky, = 647"40? (2hm) "%, K,y = Kop (648)/(t+5)e

2hm)': 2hm)"
(206) B, = 338 ( umz) ) Co =32 /;m) ’
Ty ™oV
— — 97 - _7_A_t(t+3)t —-r — 7
(207) brO Cro 330 t! (t+‘§) F( ", 4’ ) 1)’

—3), _ 1\ 15
(208) 8ubyy = dur = (—2)7 ( ;""‘("“) (2r—1) (2r+1)(20+3) (2r+5)

/-\
_;_
NIJ!

As in the case of molecules which are point centres of force varying inversely as

* Cf. §13, p. 453, of my former paper, ¢ Phil. Trans.,” A, 211 (1911).
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326 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

the n'® power of the distance, the elements b,, and ¢,, and the coeflicients 8, and y,,
are pure numbers, independent of the temperature (s.e., of /).

Molecules which are Rigid Elastic Spheres which Fxert Attractive Forces.

§9 (E) Experiments on the phenomena of actual gases, as, for example, on the
variation of viscosity with temperature, indicate that none of the molecular models
so far discussed in this chapter gives a really adequate representation of these
phenomena. The best of all the simple models which have been used in the kinetic
theory seems to be that considered by vAN pErR WaALs and SUTHERLAND, viz, a
rigid elastic sphere surrounded by a weak field of attractive force. This agrees with
the known fact of slight cohesion in gases. The effect of this field of force on the velocity-
distribution function, or on viscosity and thermal conductivity, may be referred
mainly to the deflections of molecular paths for which it is responsible indirectly,
through the collisions which it induces between molecules which would otherwise
pass one another without mutual inter-action, rather than to its direct effect in the
absence of collisions. The latter effect will be expressly neglected in our calculations,
which will therefore be inapplicable to vapours in which the cohesion is large enough
to render this neglect invalid. '

A detailed account of the dynamics of collisions in these circumstances is given in
§ 15 of my former paper, from which the following results are quoted. If the potential
of the force between two molecules in contact be denoted by %0° (reckoning this
potential as zero when the separation is infinite), the condition that a collision may
take place is

’ B2 \th
(209) p <p, where p,= 20‘<1+ 2>
30x
(since the relative velocity, in my former paper written V,, is- here denoted by 2C;).
The angle x corresponding to such a collision is given by

(210) . | | sin 4x = p/p..

The angle y corresponding to larger values of p, which do not correspond to actual
collisions, is given by (181) if the molecular forces obey the n™ power law, but we
will here make no assumption on this point, as the deflections produced by the inter-
molecular forces alone will be rejected after equation (211). Consequently

0

(211) ¢ (ry) = 2 (k1) o (1+BYACE) G2 (4h+1) Oy | {1=Py (cos )} p dp

P

= 4 (4k+1) o* (2hm) "2y (1 +20mb*[4y°) +.fur ()

by analogy with (202) and (183). The latter term fi (y) represents the negligible
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deflecting effect of the forces alone, as above mentioned, and it will be omitted
henceforward. Hence, corresponding to the equation (204) of §9 (D), we have

2
(212) b (143 Kpa s = 2 (4641) o (2hm) " T (1+2) <1 + M)
4(¢+1)
= 9 (k1) (t4+1) ! o® (2hm) " <1+ 38 >
(¢t+1)7T/°
where we have written
_ bU'm
(218) 8=k
Similarly we have
(214) Ky = Ko,1 = 647 ko (2hm)—]b<1 +‘ %) >
— (A 2 A (t+3)t< 3 8
(215) K,, = 647""? (2hm) EEN e T),
— 225 (27”%)"” 1 — 25 (2hm)" 1
(216) BO Toane  Paty 1+S/T ’ 0T 64 oty 1+S/T '

Tt will be seen later that S is the well-known “ SUTHERLAND'S constant” (§ 11 (F)).

§ 10. NumericAL CALCULATIONS ¥OR PARTICULAR MoLECULAR MODELS.
Ragid Elastie Spheres.

§ 10 (A) In the last section we determined the complete expression for the velocity-
distribution function for a gas composed of Maxwellian molecules. In the other cases
there considered we must be content to make numerical approximations, which can,
of course, be carried to any desired degree of accuracy. We shall consider in most
detail the case of rigid elastic spherical molecules, for which we shall calculate
b, and ¢, for 0=7=8, 0=s=3. These are chosen for the fullest treatment partly
because of their simplicity, and partly as representing the limit between which, and
the case of Maxwellian molecules, the molecules of actual gases appear to lie.

In making such numerical approximations the following table of expanded formulse

for B*(r, s) is useful : —
TasrLe I—Expressions for B* (7, s).
B(0,0) =1 B'(L,1)=%xy B (2,2) = &%’ B(3,3) = {8’y B(4,4) = $3a"y
B'(L0)=a"+y* B2, 1) = $ay (z*+y) B (3,2) = Sy («*+¢)
B'(4,3) = §8a%’ (2" +y") B(5, 4) = 1@&fa"y* (2 +y")
B'(2,0) = '+ 12% +y* B'(3,1) = 2ay (x*+Lta®’ +4)
B (4, 2) = 18y’ (' +Pa’y +y)
B*(8,0) = a®+7ay’ + 72’y +1f B (4, 1) = Say (2 + 2T’ + 2y + 1)

B (5, 2) =4y (a'+ Paty +4ay + 7).
VOL, CCXVI.—A, 2v
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It is wuseful also to recall that B'(r, s)=B" (s, ), and that B*(r,s) =0 if
r<kors<k. » '

By using these formulze in connection with (143), (144), (147) and (204)-(208) the
elements b,,, c,, have been calculated,® as above mentioned, and are given in the
following expressions :——

I\
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. 15 41 741
21 V() = 1 e, ke L
(217) () 2.7 273* 297.11

15 269 5993 7571
2.7 2°7* 238%7° 213.7.11
41 5993 152537 1517873
2237 2377 21317° 2°3%7°11
741 7571 1517873 50375871
2°7.11 213.7.11 2°3°7%11 23%7%117
15 41 741
21 v = 1 — i :
(218) (cx) : 973" 25711
15 877 6893 3889
2.7 2°3.7° 233777 21311
41 6893 193329 6202777%
273? PENE 2037 273711
741 3889 62027773 225937695
2%7.11 218711 2°3'7°11 20347°11°
or, writing out the elements in decimals to six places,
(219) v (b,,) = 1°000,000 1°071,429 1°138,889 1°202,922
1°071,429 1°372,449 1698,696 2°048,431
1'138,889 1°698,696 2'402,006 3'259,364
1°202,922  2°048,431 3°259,364 4'916,968
(220) V(e,) = 1000,000 1°071,429 138,889 1'202,922
1°071,429 1°491,497 1958,798 2°455,177
1°138,889 1°953,798 3'044,359 4'439,790
1°202,922 2°455,177 4'439,790  7°350,929

PHILOSOPHICAL
TRANSACTIONS

* A considerable part of the computations of §10 (A) have been made by Mr. J. MARSHALL, Scholar
of Trinity College, Cambridge, who has thus been of much assistance in bringing the results into a
useful form.
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As explained in §8 (E), however, the determinants V (3,0, and V (4,.c,,) derived
from the above by successive differencing are much more useful and suitable for
numerical calculation.* They may conveniently be written as follows, where the
factor above each column or before each row is to be multiplied into all the elements
of that column or row as written (e.g., the right-hand element on the second row of
V (3,0, is equal to —59 . {2°8.7.11.2.7} 1) : —

1 (2.7)  (2%8*7)  (2]8.7.11)7}

(221)  V(3,0,) =

1 1 1 —1 1
(2.7) 1 45 108 —59
(2%877)1 -1 103 5657 6783

(2%8.7.11)? 1 —59 6788 149749

1 (27) (28f) (288.7.11)!
(222) V(b =

1 1 1 —~1 1
(2.7) 1 298 163 — 287
(2%8%7)? —1 163 - 11889 16798%

(2°8.7.11)7 1 —2§T  16798% 32957339

As we are throughout concerned with ratios of determinants, the above fractional
expressions for the elements, from which the column-factors or row-factors can for
many purposes be omitted, are the most suitable for calculation. The following
values of the elements in decimal notation (to six places) are of interest, however, as
showing the relative magnitudes of the various terms :—

(223)  V(8,b,.) = 1:000,000  0°071,429 —0°003,968  0°000,541
0°071,429  0°229,592 0°029,195 —0°002,280
—0°003,968 0°029,195 0°089,081 0°014,565
0°000,541 —0°002,280 0°014,565 0°043,849

(224)  V(d.c,) = 1°000,000  0°071,429 —0°008,968  0°000,541
0°071,429  0'348,689  0°046,202 —0°003,698
—0'003,968  0'046,202  0°187,216  0°036,072
0:000,541 —0'003,698  0°036,072  0°096,504

* This process of differencing renders the determinants much more convergent in appearance (¢f. (219)
and (220) with (223) and (224), withont really altering in the least their value or the value of any of the
partial determinants formed by the first # rows and columns.

2v 2
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330 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

By taking these determinants with one, two, three, and four columns we get
successive approximations to V, V' (¢f. § 8 (E)), and to the actual coefficients 8 and -,

as follows :—
TasLe IT.—Rigid Elastic Spheres.
V' (8yDrs) . V' (8ys6rs)
2 - 7578 . 2 = e 0L

v (brs)' v (Crs)~ IB" v ( astrs> Y v ( 87‘3 Crs)
1st approximation 1-000,00 1-000,00 1+000,000 1-000,000
ond . 0-224,49 0- 343,54 1-022,727 1-014,851
3rd ” 0-019,13 0-062,15 1-024,818 1-015,879
4th ” 0-000,79 0-005,54 1:025,134 1-016,065

The determinants V (3,.b,,), V (3.c,.) are obviously much more convergent in form
than V (b,,), V (¢,). Table IL shows that in each case these determinants converge
rapidly to the value zero, but that the principal minors of the former determinants
converge also to the same value in nearly constant ratios. These ratios, the
successive approximations to which are given in the two last columns of Table IL.,
are the quantities 28, and =y, which we require ; they evidently converge rapidly,
the successive differences being as follows :—

Tarsre IIIL.—Rigid Elastic Spheres.

2, Differences. Zyy. Differences.

1st approximation 1-000,00 1-000,00
2273 1485

9nd N 1-022,73 1-014,85
209 103

3rd ' 1-024,82 1-015,88
) - 31 ) 29

4th 1-025,13 1-016,07

We may therefore conclude that, within a small fraction per cent., 28, and Zy,
have the following values for rigid elastic spheres :—

(225) 2, = 1026, ?V, = 1016, 26,/2y, = 1'010.
It should be noticed that even the second approximations to these quantities give

results which are very nearly accurate, owing to the rapid diminution of the successive
differences.


http://rsta.royalsocietypublishing.org/

-
A
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 331

While we may thus obtain a close approximation to the values of the series =g,
and 2y, with little difficulty, the approximations to the values of the individual
coefficients B and 5 converge by no means quickly, as the following table

shows :—
Tasre 1V.—Rigid Elastic Spheres.
1st approximation. | 2nd approximation. | 3rd approximation. | 4th approximation.
Bo 1-000,0 1-340,9 1-520,2 1-623,0
B o -0-318,2 -0°652,1 : ~0°:943,2
Bs — — 0-156,7 0-432,8
Bs — , — — ‘ -0-087,5
o 1-000,0 1-222,8 1-309,4 - 1-366,3
Y1 — -0-207,9 —0-368,8 —~0'526,3
Y2 — — 0-075,4 0-221,8
Y3 — —— — - 0 045,7

Evidently the B's and ’s alternate in sign, and successive terms do not seem to
diminish quickly, at any rate near the beginning. To obtain an accurate estimate
of the real values of these coefficients it is clearly necessary to carry the approxi-
mation much further than we have done, but for our purpose this is not required.

Molecules which are Point Centres of Force varying as r™".

§ 10 (B) The next simplest case, analytically, to that which has just been discussed
is the case of molecules which are point centres of force varying inversely as the
n® power of the distance. By comparison of (186) and (205), in conjunction with
the general expressions for b,, and c,, it is easy to see that the difference between

. . .. 1
the values of b,, or ¢,, in the two cases consists of a power series In — the constant

term of which is zero, while the term of highest order is (n—1)~%+9, Numerically
the difference is small, as may easily be verified in any particular case; it appears
to be of constant sign, b, and c,, being greatest for molecules which are rigid elastic
spheres. The behaviour of the determinants V (b,,), V(c,) or V(8,b,), V(dscy,) is
similar in the two cases, the convergence being slightly the more rapid in the present
instance. Since for rigid elastic spheres the second approximation to 28, and Xy,
proved so satisfactory, we shall be content with a second approximation only, for
molecules which are point centres of force; this very materially lightens the labour
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332 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

of numerical calculation. 'The following are the expressions found for the deter-
minants V (8,0,,), V (J,.¢,,) as far as regards the first four elements :—

(226) V(3.b,) = 1 {111 - '2_(17)}

{]"11 _'2‘(777_3} {%56“ 49 (74;-1) 10 (ﬁ4—1)2}

V(3.0.) = 1 Lol

1 7 205 4 4
{1_1_2(n~1)} {5~8§_49 (n——l)+49 (n—l)z}

When 7 is made infinite these become identical with (221), (222); it is interesting
to notice that the additional terms are the same in the two determinants, though
whether this is true for other values of 7 and s 1s not clear.

The first approximations to =B, Xy, are, of course, unity; the second are found
to be approximately as follows :—

16 n—2 1— 48 n—2

45 45 (n—1) . 205 205 (n—1)

227) 38, = — , Sy, =22 _
(227) b=t 2 1 79027121

11 n—1 101 n—1
From §9 (C), (196), we know that when n =5 the values of 2B, and Xy, are
0 0

unity, and this is also true of any approximation to their values made in the present
manner. From §10 (A), however, we know that for n = o the second approxi-
mations are slightly too small, by 07003 and 07001 very nearly. In the following
table, therefore, which gives the approximate values of 28, and Xy, for various
values of n lying between 5 and oo, the results obtained from (227) have been
increased by 0°001, 0002, or 0°003, as seemed most appropriate in each case.

TaeLeE V.—Molecules which are Point Centres of Force varying as

MAXWELL'S n = oo,
case, n = 9. n = 1b. n = 25, rigid elastic
n = b, spheres.
B, 1 1:007 1-013 1-018 1-026
«=3y, 1 1-004 1-007 1-011 1-016
0
8 = 2B/ Zyy 1 1:003 1:006 1-007 1-010
0 0
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Tgid Elastic Attracting Spherical Molecules.

§10 (C) Considering next the case of rigid elastic spherical molecules which exert
attractive forces, as in §9 (E), we shall neglect the effect of the attractions in
producing deflections without actual collisions, and, as in §10 (B), we shall content
ourselves with a second approximation to =8, and =y,. The difference between this
case and that of rigid elastic spheres without attraction is small. The expressions
for V (8,,0,5) V (8.4C.s), as far as regards the first four elements, are as follows :—

(228) V (8shrs) =

! {’[]‘* 1+ S/T}

1+S/T 196 1+IS/T
v () = [, 1=8/T)
! " T+S/T)
[ LS (q0q LS/
14 f 5

When S = 0, 7.e., when there is no attraction, these reduce to (221), (223).
The second approximations to =8, and 2y, are hence found to be as follows :—
45 (1+328/T)
5(1+32S/T)—(1—=S/T)* (1 +S/T)
205 (1 +458S/T)

205 (1 +482S[T)—3 (1=S/T) (1+S/T)
Since S/T is never negative, it is clear from (229), (230) that the second approxi-
mations to =B, and Xy, are never less than unity. Their values, without any

(229) 2B, = o — , approximately,
0

(230) %yr = —, approximately.

estimated correction for the error of approximation, are given in the following table,
for various values of S/T. The correction as estimated is appended as a suffix, and
is to be added to the last digit of the corresponding number.

TasrLe VI.—Rigid Elastic Attracting Spherical Molecules.

Low temperatures. Moderate temperatures. High temperatures.

;%. o | 5. 4. 3. 9. | 1. | o7 | o4 | 02 | o1 | o

pyc 1-0381-015, | 1:0125 1 1-008; | 1-0045| 1 |1-0015|1-005;|1-0115!1-0165|1-023;
o ,
=2y, {1°016]1-009;[1°007;  1-005;1-002| 1 |1-001y{1-004¢|1-009;|1-013;|1-015¢

8 =3B,/Sy, 1-022| 1-006; [1:005, 1-003, 1:002 | 1 |1-000,| 1001, |1-002; | 1-003; | 1-008,
0 0
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In the case of the actual gases for which S has been determined, it has an extreme
range from about 50 to 250, while the range of absolute temperature over which
experiments are usually made is from about 50° C. to 500° C. Thus the limits 5 and %
are rather extreme values of S/T, but from the above table it appears that the variation
in 28,, 2y, or their quotient hardly exceeds 1 per cent. over this range. The variation
is especially slow in the neighbourhood of S/T = 1. '

§ 11. Viscosity AND TuERMAL CONDUCTION.

We now proceed to apply the expression for the velocity-distribution function
(§ 8 (B)) to the determination of the coeflicients of viscosity and thermal conduction.
We shall first obtain general formule for these coefficients, true for any monatomic
gas, afterwards cousidering special molecular models in conjunction with the results
of §§ 9, 10.

The Coefficient of Viscosity.
§11 (A) The system of pressures at any point of a gas is given by the equation
(231) - P,=pU% P, =)0V, &e

By means of (5) and the velocity-distribution function (142), we find that

(282) P, = pU” = §pC*+4p30° -,
= PP O3y,
2hm  1bhm Y
233 P.o= Lo (3
( ) xy 30hm Cig oOYr

Since, by (74),
Cipt Oyt Cy = 0,
we have

234 P,+P,+P. =38_-L_=
( ) ) rz+ .1/!/+ zz th p;
p being the hydrostatic pressure as usually defined.
By comparing (232), (283) with the equations giving the system of pressures in a
viscous fluid having a coeflicient of viscosity u, viz., with

=2y, (g O _Ovy _ dwy
(235) Pzz - _p 3M< am ay az /)D
= Z)—%Mcu-
(236) Pwy = "M('g—;o + %Zg> = _%#012
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(remembering the meaning of ¢, ¢y, &c., as defined in (72)), it appears that the two
are identical if we write

(237) M= TLG }';B—-CO?’YT'

Hence, according to the kinetic theory, a gas behaves like an ordinary viscous
fluid having a coefficient of viscosity defined in terms of the molecular data by (237).
By (170), (178) we have

(238) , =22
7TVK'0
whence, also,
5 1%
239 = — — Dy
( ) # 27 hi, ZOJYT

As we have seen in § 8 (B), , and 2y, are functions of the temperature (or A) only,
0

and » does not appear at all in the formula for x. Hence, within the limits of
applicability of our theory (cf. § 2), the coefficient of viscosity of a gas is independent
of its density, varying only with the temperature. The law of this variation depends
on the law of inter-action between two molecules at encounter, this being involved
through ¢* (ry). As this function has remained unspecified, the expression in (237)
is perfectly general and valid for any nearly perfect monatomic gas.

The Equation of Energy for a Simple Monatomic Gas.

§ 11 (B) In the discussion of the equation of transfer in § 8, we consistently neglected
such second order quantities as products of differentials, or differentials of small
quantities like UV, C*~3U? and so on. In this way we have obtained an expression
for the velocity-distribution function which is correct to the first order. By means
of this function we can now determine the values of UV, C?—3U% UC?, and similar
expressions which are of the first order of small quantities, and by substitution in the
equation of transfer obtain this in a form accurate to the second order. This we shall
do for the special case Q = (u)+(v)’+(w)’, in order to get a second approximation to
the equation of energy.

From the velocity-distribution function, using the formula (287) for the coeflicient
of viscosity, we have

(240) C? = 8 (hm)~* = 3R/ [m.
S0P CF — Quy _ 90y _ (Lv>
OV == (o) (22 + 22
(242) 0V =~ (ufe) (G2 +52).

VOL. CCXVI.—A. 2z
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336 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,
In finding UC? it is convenient to write

(248) | F=138[%,

and to recall (¢f. (170)) that '

(244) B, = 20,

Thus we have
=_2 =R QI —_opm ROT
=—2B,(2/m)- T o 3fp o

where we have eliminated 8_, by means of (148).
Again, if Q = (u)*+ (v)’+(w)’, we have

Q = uy’ + v+ w,>+2 (u,U + 0oV + W)+ C?,
Q = u+vi+wi+C

() Q = uy (u* +0,"+w,%) +2%,C*+ 2 (20,U%+ 0,0V +10,UW) + UCE

L G ()

Hence, putting u, = v, = w, = 0 except in differential coefficients, we have

Q0 =30/ ¥ \N_ 8 & o 0/[ 1
ot Q) =3 ot <2hm> = ot T <2hm>

B e
E%(um <C2+2U‘ 8;; +20V %”0 +20W %”—’“> +E;x (vUC?)
= {"’O%%“” +5 307 C”a“°+2uv %”" +2UW %w"} +>:aa (uC?)
ST
sl g
77';- =X <;<—%)> = 0.

Also, since no energy is gained or lost in molecular encounters,

AQ = 0.
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The equation of transfer becomes, consequently, after a little reduction,

52 (D) _gr(de 2, 2
(246) ot~ 28w<‘ﬁu ox 3T ox + oy + 0z

N
TR, {22 ox/) B = ox = % T dy/ )’
which is the equation of energy.

The Thermal Conductivity of a Gas.

§11 (C) In the equation of energy which we have just obtained, the second term
on the right-hand side represents the change of heat per unit volume due to the
variation in density at the point considered, while the third term may be proved
equal to the heat produced by internal friction. The first term, by comparison with
Fourier’s equation of conduction of heat (¥ being the thermal conductivity and C, the
specific heat at constant volume), ¢.e., with
T _ 50 <38T>’

Crar =25 \V o

is seen to represent the change of heat by conduction, and to indicate that the
coefficient of thermal conductivity of a gas is given by

(247) S = fuC,

The value of f in this well-known formula is, for a general monatomic gas, given by
(243), v.e.,

(248) f___' A5‘2181‘/§7r'
0 0
In general f is a function of the temperature only.

Formule for n and ¥ for Particular Molecular Models.

§11 (D) By substitution of the values of C, and 28,/Zy, given in §§9, 10, for the
particular molecular models there discussed, we obtain the following special cases of
(287) and (248) :—

(249) Rigid elastic spheres,

1y
w= 1016 —5—m—2<-111> £=13.1010 = 2525,
647he® \m
(250) Attracting spheres,
L J
hm R 1>1/2 1 5
= (14e) 2 (Bp)r L — 5149
w=(1+e) 647 c? <m 1+8/T ; f=2(1+d),

2 7z 2
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(251) Centres of force r~*,

8 AT <4——2 m
n—1

w=(he) —— o ><Er>‘— F=5040)

In these formule ¢, and ¢, denote the values of =y, in the cases respectively when
0

the molecules are attracting spheres and centres of force, and §, and §, similarly denote
3B,/Zy,; their values are given in Tables V. and VI., and in no case differ from
unity by more than two per cent.

The mode of variation of x with the temperature affords a guide to the law of inter-
action between the molecules of actual gases. By comparison with experimental
determinations of u at various temperatures it is thus found that of the above models
the one which most closely represents the behaviour of actual molecules in this respect,
at ordinary temperatures, is the second, s.e., a rigid elastic attracting sphere.*

Comparison of the present formule for p and § with those of my previous paper.
§11 (E) The general formulze (237) and (248) for viscosity and thermal conductivity

agree with those of my former paper,f except that the factors %,8, and §,8,/§y,_ were
0 0 0

there omitted. This was in consequence of the assumption on which the analysis of
that investigation was based, that F (U, V, W) is sufficiently represented by the
terms of the first three degrees in U, V, W. We have seen in §9 (C) that this is true
for a gas composed of Maxwellian molecules, but not otherwise. It seems of interest
to consider why the neglect of all the coefficients 8,, v, after » = 0 led to results of
such accuracy ; for the errors arising from the assumption are represented in the
special cases (249)-(251) of (237) and (248) by the factors 1°016, 1°010, 1+¢, 1+3,,
1+e, 1+, so that the necessary corrections to my previous formulze do not exceed one
or two per cent. IENsKoG, on the other hand, after deducing formulze similar to (287),
(248), but without evaluating the coefficients 8,, v,, made a first approximation by
neglect of all these coeflicients after » = 0, and arrived at the result f = 5 for rigid
elastic spheres.] This was due to the fact that such a use of (237), (248), as they
stand, involves not only the neglect of all the coefficients after » = 0, but also requires an
assumption as to the values of B, y, themselves, as, for instance, that they are approxi-
mately the same as for Maxwellian molecules ; a comparison of (196) with Table IV.
(p. 381) will show that this is far from being the case.

It may readily be seen, however, that the method of my former paper required no

* At very low temperatures, however, the n power centre of force is the molecular model which gives
by far the best representation of the relation between p and T, in the case of helium; ¢f. KAMERLINGH
OnnEes and Sopnus WEBER, ‘Comm. Phys. Lab. Leyden,’ 1348, p. 18, or JEANS' ‘Dynamical Theory
of Gases,” 2nd ed., §§ 405, 407.

T CHAPMAN, ‘Phil. Trans.,” A, vol. 211, p. 433, ¢t seq.

1 Enskog; ¢ Phys. Zeit.,” XI1., p. 58, 1911.
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hypothesis as to the values of 8, y,, which were determined from AUC?and AU? as in
this paper ; in effect, the later coefficients were neglected, while 8, and v, were obtained
from the equations (138), (189) corresponding to s = 0. Viewed otherwise, my

previous formule were equivalent to (2387), (248) divided respectively by Zk,y./x
0

and Z«,B8,/Z«y,. Thus the neglected factors in « and f were
0 0

EKUVT 2181' E’Cryr
7 and —
ZkyYr 2y, 2,0,
0 0 0

which evidently reduce to unity if we neglect all the 8/, and v/, after » = 0, without
any assumption as to the values of 8, and v,. -

One of the main results of the former paper was that f = § for all monatomic gases,
and not only for those composed of Maxwellian molecules. This is now seen to require
modification, but the values here found for f in the special cases which have been
considered in §§9, 10 show that the correction needed to make the equation accurate
is very small; it appears probable that for all likely molecular models f is very
slightly greater than 25, and that it is nearly but not quite constant with change
of temperature (except when the molecules are elastic spheres or centres of force
‘proportional to ).

Comparison of the Formule for u and S with the Results of other Theories.

§ 11 (F) The only kinetic theory of viscosity and thermal conductivity which could
hitherto lay claim to numerical accuracy (within the limits imposed by the initial
postulates) is MAXWELL'S theory* of a gas composed of molecules of the kind dealt
with in §9 (C). The results of his theory are special cases of the general formule of
this paper. ‘ ‘

The theory of a gas composed of molecules which are point centres of force varying
inversely as the n'® power of the distance had not been discussed in detail, previous
to my own former paper. RavLricH,t however, from considerations of dimensions
alone, had deduced the law of variation of viscosity with temperature, and the same
argument would also show that for such a gas f is an absolute constant (for any given
value of n). Nothing was known as to the value of this constant, or of the numerical
coefficient in the expression for u, and it is a surprising result, which could hardly
have been guessed d priori, that as n ranges from 5 to o the value of f should vary
only from 2'500 to 2'525 approximately.

The theory for molecules which are rigid elastic spheres exerting attractive forces
was equally undeveloped. SurHERLAND] had taken an important step, however, in

* MaxwzLL, ¢ Collected Papers,” vol. IL., p. 23.

T RayLEIGH, ‘ Roy. Soc. Proc.,’” vol. 6, p. 68, 1900.
1 SUTHERLAND, ¢ Phil. Mag.,’ (5), 31, 1893.
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340 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

deducing the correction to the law connecting u and T (z.e., u oc T) for molecules
which are rigid elastic spheres without attraction; he showed, without attempting
numerical accuracy, but by a method which is correct in its main outlines, that the
attractive forces necessitate an additional factor (1+S/T)% as in (249). The law
woe T (14+S/T)-* is more successful than any other in representing the observed
relation between u and T over a considerable range of temperature, and S is deservedly
known as SUTHERLAND'S constant.

The theory of a gas composed of molecules which are rigid elastic spheres, which
was taken by SUTHERLAND as the basis of his modified formule, has been developed
along lines different from those of this paper by Crauvsrus, MaAXwEgLL, BOLTZMANN,
MxevERr, STEFAN, JEANS, and others. Their method was less analytical than the
present one, and while it gave correctly the general relationships between u, 3, p, p,
and T, its results do not possess numerical precision. JrEANS* notably improved
certain of the formule due to earlier authors by taking into account the tendency
of a molecule to persist, after a collision, in the general direction of its original course.
For this reason his expression for the viscosity, viz.,

(252) n= 088 _m <B T>l/2, (JEANS)

approaches more nearly to the correct: expression (249) than does the formula of any
other authorf. A comparison of (249) with (252) indicates that the latter is still too
small by 12 per cent.; the error of the original formula, without JEANS’ correction,
was 30 per cent. '

The numerical inaccuracy of the earlier prevailing theory of conductivity, which
was due to MEYER ], was very great. Its result was generally given as

J = fuC, where  f= 16027,

but Prof. L. V. King, of McGill University, has pointed out to me by letter that
MevEer's argument really leads to the result

f= 14161,

a numerical mistake having crept into his work which had not previously been
detected. The correct value of f for rigid elastic spheres is given in (249), ..,

f = 2'525.
This large error in MEYER's theory indicates the difficulty of arriving at numeri-
cally accurate formulee by the older “mean free path” method, and diminishes

* (f. JEANS’ ¢ Dynamical Theory of Gases.’
T Apart from that in my former paper, which was 16 per cent. too small.
I MEYER’s ¢ Kinetic: Theory of Gases,” 2nd English edition, chap. IX.
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confidence in other parts of that theory where detection of error is less easy. Until
recently MEYER'S value of f received support from experimental data for diatomic
gases, to which it does not really apply ; only lately have data for monatomic gases
been obtained, which, as we shall see, give values of fnearly equal to §.

§ 12. CompArIsoN oF THE THEORY WITH EXPERIMENTAL DATA.

The Variation of Vascosity with Pressure.

§ 12 (A) The main objects of a comparison of a mathematical theory with experi-
mental data are either to test whether the postulates underlying the theory are valid, or
whether the theory is itself mathematically correct. The present theory being exact,
within certain defined limits, our purpose in this chapter is to consider how far the
hypotheses underlying the analysis are well founded. The general validity of the
foundations of the kinetic theory is attested in many ways, one of the most striking
being the independence of viscosity and pressure in a gas. This law, when first
discovered by MAXWELL, seemed so improbable that it gave a great stimulus to
experimental research on gases, and the constancy of u, when T is kept constant, has
been verified over a range of pressure extending from a few millimetres of mercury up
to more than one atmosphere. WARBURG and voN BaBo have found that, in the case
of carbon dioxide, the law begins to fail when the pressure becomes so great as 30 to
120 atmospheres, u rising appreciably. In very rarefied gases, on the other hand, the
viscosity falls below the value appropriate to the existing temperature. This must be
referred to the failure of the postulates of our theory to represent the facts in these
extreme cases, the molecules becoming too few for our statistical method to apply, on
the one hand, while on the other our assumption that the molecular paths are
rectilinear for the major part of the time, and our neglect of multiple encounters,
become illegitimate.

The Varation of Viscosity with Temperature.™

§12 (B) Over a wide range of pressure and temperature, undoubtedly, the general
postulates of our theory are true for actual gases. We cannot discover directly,
however, the nature of the molecules or their mode of collision, and it is important,
therefore, to examine which molecular model yields formulee most in accordance with
experimental data. For this purpose we naturally choose those properties which are
most affected by the nature of the molecule; the chief of these is the variation of
viscosity with temperature. Maxwgrr abandoned his theory of a gas composed of
rigid elastic spherical molecules because it led to the relation u oo T", while his experi-
ments gave the result uw ocT. This caused him to develop the theory of a Maxwellian
gas (§9 (C)), for which e T, but later experimenters have failed to confirm this law,
and we must conclude that the molecules of actual gases behave during encounters
‘neither like elastic spheres nor like Maxwellian molecules. The observed relation

* The reader may be referred with advantage to the discussion of this point by JEANS in the second
edition of his ¢ Dynamical Theory of Gases,” §§ 399-407.
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342 DR.S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

between u and T agrees much more closely with SuTHERLAND'S law w oc T%(1+S/T)~?
than with any other; for example, ScamMITT* has found that the law is valid for
hydrogen and helium from —60° C. to 185° C., and’ BARUS has shown that it holds
good for air over a wide range of temperature. The law has not been tested, for the
former gases, above 185° C.

This seems to indicate that for the kinetic theory of gases at ordinary temperatures
the best molecular model is an attracting sphere, and it is interesting to notice that
this model is the one used by vax pErR Waars with such success in deducing his
famous law. Further confirmation is supplied by the excellent agreement between
the values of the molecular diameters deduced on this hypothesis from the constant
b of vaAN DER WaAALS law and from the viscosity by means of my formula (250)—
of. § 12 (F).

At low temperatures Scumrrr*, BestenmeEvERT, Voerr] and others have shown
that the observed values of u are greater than those predicted by SUTHERLAND'S
law. This may be compared with the rise in the value of x when the pressure is
greatly increased, both effects probably having a like cause ; in these states, when the
‘mean free path of the molecule is much reduced, the molecular paths may cease to be
approximately rectilinear between collisions, and multiple encounters will grow in
importance. Since our theory rules out these contingencies, its results cease to be
applicable, and a modification of the theory and its postulates is necessary if a proper
account of these phenomena is to be given. Inregard to this, one point which should be
noticed is that in §9 (E) a term /3, (y) in ¢™ (vy) was neglected (cf. (211)) which, if
retained, would cause the law connecting x and T to take the form

Tk
“E TSI/ (T)

where f (T) can be expanded in the form AT-*4+BT~*+.... This term is due to the
effect of the attractive forces in producing deflections without the occurrence of

collisions, and is probably always small ; but it may readily be seen that it is always
positive, and that this correction would lead to a dimznution in the theoretical value
of uat low temperatures. Clearly, therefore, the observed discrepancies cannot be
attributed to our neglect of this small quantity.§ ‘

* Scumrrt, ¢ Ann. d. Phys.,’ 30, p. 399, 1909.

T BESTELMEYER, ¢ Munich dissertation,” 1903.

I VogEL, ‘Berlin dissertation, 1914, where full references, and an interesting discussion of low
temperature work on viscosity, are given.

§ VoGEL, in his dissertation, suggests as possible causes of the failure of the theory to represent the
observed variation of p with T at low temperatures (i.) a failure of the ordinary mechanics, such as is
contemplated in PLANCK’S theory of quanta ; (ii.) that the attracting sphere model no longer represents
the molecule; (iii.) that 1+ S/T should be replaced (according to my suggestion in ¢Phil. Trans.,” A,
vol. 211, p. 474, 1912) by 1+ (S/T) £ (C'/T)2. By the latter means a better accordance with observation
is obtained, but the new term has the minus sign, and is therefore illegitimate,
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The Thermal Conductivity of Monatomic Gases.

§12 (C) It is convenient to discuss the thermal conductivity of gases in terms of the
constant f in the formula ¥ = fuC,, as this eliminates the necessity for a separate
discussion of the dependence of ¥ on pressure and temperature ; this is parallel with
that of u, and f is nearly or quite independent of pressure and temperature in normal
conditions. As we have seen in § 11 (F), the value of f has been a matter of some
uncertainty ; so long as its value for rigid elastic spheres was supposed to be 16027,
while for Maxwellian molecules it was known to be %, it seemed to offer a means of
testing the suitability of different molecular models. On the ground of the
discrepancy between the theoretical and observed relation between u and T,
Maxwellian molecules were known to be unsatisfactory representations of actual
molecules. Until about 1900 no reliable determinations of f had been made for mona-
tomic gases, and those found for diatomic gases agreed fairly well with MrvER’s value
of f (4.e., 16027 or, more accurately, 1°416); at the time this was regarded as a
confirmation of the rigid elastic spherical model of the molecule, and as indicating
that the internal molecular energy, which is not taken into account in these theories of
a monatomic gas, is transmitted at the same rate as the translational energy. When,
in 1902, ScHWARZE obtained the values of f for argon and helium, and found them
nearly equal to §, the conclusion to be drawn was not obvious. It certainly
contradicted MuvER's theory, but left the question open as to whether the analysis, or
the assumption of the rigid elastic spherical model, was at fault ; also if f = § indicated
that the molecules are Maxwellian, the failure of the corresponding law connecting
w and T remained unexplained. It should be remembered, moreover, that the law
w o= T for rigid elastic spherical molecules is equally contradictory to experiment.

These difficulties were removed by the theorem of my former paper, according to
which fis an invariable constant § for all monatomic molecules. This is now seen to
be incorrect as a general theorem, but the deviations found for the various particular
molecular models discussed leaves little room for doubt that £ is very nearly equal to
% in the case of all likely models. The fact simply is, therefore, that f is very
unsuitable as a means of discrimination between different models, and SCHWARZE'S
observations indicate some mathematical fallacy in MEYER’s theory, without supporting
any particular molecular model. The observed values of f are hardly known with
sufficient accuracy to enable any conclusion to be drawn from a slight divergence
from the value §, within the limits prescribed in (249) to (251). They are important,
however, as confirming the general validity of the kinetic theory, apart from any
hypothesis as to the nature of the molecules.

The following table contains all the available data concerning the value of f for
monatomic gases. Only very recently has the conductivity of neon been deter-
mined, owing to the scarcity of the gas; for krypton and xenon its value is still
unknown.

VOL. CCXVI.—A. 3 A
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TaBLe VII.—Values of f for Monatomic Gases.

Gas. Absolute temperature. I Authority.
Heolium 2703 2-51 SCHWARZE*
E 240 BUCKENT

81 2:23 RuckeN

21 202 EuckeN

2-50 SCHWARZE

Argon . . . . . . . . 273 { 9-49 FUCKEN
91 2-57 BuckeN

Neon . . . . . . . . 283 2:50 DoRN}

These results for argon and neon and, to a less extent, for helium at normal tempe-
ratures agree very well with the theoretical value of f, especially since the combined
experimental errors in their determination may easily exceed one per cent. at ordinary
temperatures, and much more at low temperatures.

The diminution in the value of f for helium at low temperatures, if confirmed by
further experiment, is very interesting and important. Helium is peculiar at low
temperatures also in the striking divergence of its viscosity from SUTHERLAND'S law.
EuokeN suggests as the explanation of the former phenomenon a partial failure of
interchange of molecular energy at collision, but (¢f. Table VI. of his paper) down to
81° C., at any rate, the value of C, for helium remains constant and appropriate to a gas
which possesses only translational energy. A failure in interchange of translational
energy would contradict the ordinary dynamical laws, and 1t is certainly desirable to
seek some other explanation, if' this be at all possible.

The alternatives are not numerous, and will be examined in turn. We may rule
out a numerical error in the theory, of more than one per cent., as being quite
improbable ; but though all the molecular models discussed in this paper lead to
values of f equal to or slightly greater than 2'5, it is concelvable that for some
peculiar model f may have rather different values and a wider temperature range. 1
think this is unlikely, and that it is probably possible to prove that f always
exceeds 25, but this is only a speculation ; helium agrees so well at high tempera-
tures, however, with SUTHERLAND’S law connecting x and T, that its molecules can
hardly be supposed so different in behaviour from rigid elastic attracting spheres as
to make f theoretically equal to 2°0 at low temperatures.

Again, molecular aggregation might seem to afford an explanation, since if part of
the gas were polyatomic through clustering of the molecules, the value of f would

* Scuwanrzr, ¢ Halle dissertation, Ann. d. Phys.,” (4), 11, p. 303, 1903.

t EuckeN, ‘Phys. Zeit.,) 14, p. 324, 1913, Tables 3, 6. EuckEex (footnote 4 to p. 328) states that
ScuwARZE's value of f for helium is too large owing to a miscalculation in determining C,.

1 This result was kindly communicated to me by Prof. DorN, of Halle, as an extract from ‘¢ Mitt. d.
Naturf. Ges. z. Halle,” 4, 1914.
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probably lie between 2°5 and the lower values characteristic of polyatomic gases. In
this case, however, the value of C,, the specific heat at constant volume, should rise
to correspond with the internal energy of such molecules ; as the experiments indicate
a constant value of C,, the suggestion must be abandoned.

The only possible remaining hypothesis seems to be to attribute the fall in f to the
neglect of multiple collisions between molecules, including also the effect of the
attractive forces (in SUTHERLAND'S case) in producing deflections without collisions ;
at low temperatures the molecules may be too close together for these postulates of
our theory to continue valid. If we determine ¥ for helium from the formula 254 C,,
using the value of u calculated from SurHERLAND'S formula (which is less than the
observed value at low temperatures, as we have seen), the result is less than that
observed at low temperatures. Hence both ¥ and u diminish with temperature less than
is predicted by SUTHERLAND'S law, the divergence being greater for u than for 3, so that
J also diminishes. We cannot enter here into a test, by calculation, of this suggested
hypothesis, but some confirmation might be sought experimentally by examining
whether f1s less than 2°5 for helium at normal temperatures but under considerably
increased pressure. The latter would bring the molecules closer together in the same
way as would a diminution of temperature, and this is all that our suggestion requires.
It is known that over a large range of pressure u and ¥ are constant, but that at
high pressures u increases; the independence of & on pressure has usually been tested
by demenishing the normal pressures,® and experiments under increased pressure
might throw valuable light on the present phenomenon. Gases other than helium
may be expected to behave similarly, though perhaps only with lower temperatures
or higher pressures.

§12 (D) The case of mercury vapour may also be mentioned, as it was the first
monatomic gas for which f was determined. Kocut determined u for mercury vapour
at 208° C., 273° C., and 380° C., while ScHLEiERMACHER] determined & at 203° C.
These data, together with the theoretically calculated value of C,, led to f = 3°15.
MEevEr and others have raised objections to the determinations of u (@) because the
three values show an improbable amount of variation with temperature, and
(b) because of the vitiating effect of condensed mercury on the walls of the capillary
tube used in the experiments. VocuL§ has made a re-calculation of u for mercury from
an interesting formula which he gives, and finds that at 573° C. absolute|| u should
equal 593'1077 ; this, combined with SCHLEIERMACHER'S result, reduces f to 2'80. But
it is desirable that more accurate experiments should be made in order that a
thoroughly reliable value of /' may be obtained.

* KUCKEN, ‘ Phys. Zeit.,” 12, p. 1103, 1911, Table 2.

T Kocn, ¢ Wied. Ann.,” 19, p. 857 (1883).

| SCHLEIERMACHER, ¢ Wied. Ann.,” 36, p. 346 (1889).
§ VoGeL, ¢ Berlin dissertation,” p. 57, 1914.

|| So given by VoGEL; it may be a misprint for 473° C.

3 A2
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The Thermal Conductivity of Polyatomic Gases at Low TeMpefratures.

§12 (E) The formula & = fu C, is true for polyatomic as well as for monatomic gases,
J being independent of pressure and temperature over a considerable range. Under
normal conditions, however, its value is 2°0 or less, being greatest for diatomic gases
and diminishing down to about 1'5 for complex molecules. Euckex* has made the
interesting and important discovery, however, that diatomic gases show an increase
in f at low temperatures, the conductivity varying with temperature in the sense
opposite to that observed in the case of helium. This is apparent, to a slight extent,
in nitrogen, but is most striking in the case of hydrogen. It is found that, simul-
taneously with the rise in f; the specific heat C, progressively falls in value until at
21° C. absolute its amount is that appropriate to a monatomic gas of the same molecular
weight. At these low temperatures the rotatory motion of the molecules seems to
fail, for some reason as yet undiscovered, so that the gas behaves in certain respects
as if its molecules were of the spherically symmetrical type discussed in this paper.
It is highly interesting and significant that this approach to monatomicity is
‘accompanied by an upward tendency of f towards the value (2'5 approximately)
which is appropriate to monatomic gases. The same phenomenon may be expected in
the case of the other diatomic gases, at lower temperatures corresponding to their
lower boiling points. In the following table® the results for hydrogen alone are
given ; the number # in the third column represents the number of “degrees of
freedom ” of the molecule, as calculated from the observed values of C,.

Vavuss for f for Hydrogen.

Absolute
temperature. J "
° C. ;
273 1-96 | 4-80
195 2:09 4-41
81 2+25 , 3-16
21 2-37 i 2-98

The Diameter of the Molecule.

§ 12 (F) In my former paper tables were given showing the values of the molecular
diameters for several gases, calculated on the hypothesis that the molecules are rigid
spheres, with or without attractive force. These require a small correction to be
stribtly accurate, on account of the factor (Zy,)" there omitted from the formula for

* Cf. EUCKEN, ‘ Phys. Zeit.,’ 14, p. 329, 1913, Table 6.
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o in terms of w. In this paper I shall give only a few values of o, calculated from
recent data and from the exact formula

s . 5m <.1_% >1/2
7= (1+ a) 64mu (1 + S/T) mT

0°491 (14¢,)p C
21/“7rv,u. (1 +S/T)

appropriate to attracting spherical molecules. The values of S are determined from
the variation of viscosity with temperature, C is the mean molecular velocity, while
¢, 1s found from Table VI. (in all the cases here considered it is quite negligible).

In the following table values of the diameters calculated from the constant b of
vAN DER WAALS' law are also given for comparison. The agreement between the two
sets of values is in most cases remarkable, and the table as a whole is a testimony to
the close numerical accuracy now attained by the kinetic theory ; where there is
disagreement in the table there is in most cases uncertainty as to the data.

While exact agreement may be expected only for monatomic gases, the values for
diatomic gases show that our theory gives a mean diameter, in other cases, which agrees
with that found for b; the internal energy which prevents the application of our
formulz to the conductivity of polyatomic gases hardly affects viscosity.

TasLe VIII.— Molecular Diameters Calculated from Viscosity and
Van DER Waals’ Law.

. 1+ €4 VAN DER WAALS' 201108 2075108
Gas. po 1001 8o paple VL) b. (viscosity). | (VAN DER WAALS.)
Argon . . . . .| 2107 | 162 1-002 0-001347 2-84 2-85
Krypton . . . .| 2334 | 182 1-001 0-001774 3-12 3-14
Xenon . . . . .| 2107 | 252 1-000 0-002304 3-47 3-49
Helium. . . . .| 1885 75 1-006 0-000432 1-89 1-96
Oxygen . . . .| 1923 130 1-005 — 2-93 2-89
Hydrogen . . . .| 854 76 1-006 0-00096 2-36 2-59]
Nitrogen . . . .| 1672 | 112 | 1-003 0+00255 310 S
Air . . . . . L1 |1 1-004 0-00209 3-08 3-30
Carbon dioxide . .| 1388 | 249 1-000 0-00228 {g% 5o
REFERENCES.

Viscosity w, at 278° C. absolute.—These values are taken from the table on p. 476 of
my first memoir, where full references may be found. They agree very well with the
list given by Euckex (‘ Phys. Zeitschr., 14, Table 8, 1913), in which VoerL’s
determinations are included with other recent values in taking means,
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SUTHERLAND'S constant S.—These values are those given in the same table of my
former memoir (what is called S in this paper was there, and is usually, denoted by C),
where references to sources may be found. The value for krypton was there given
incorrectly ; T am indebted to Dr. G. Ruporr for the correction.

vAN DER Waars' b.—The values for helium (KamerriNgHE ONNES), hydrogen,
nitrogen, air (Rose-INNES), and carbon-dioxide (vAN DER WAALS') are taken from
JeANS’ ‘Dynamical Theory of Gases,’” 2nd edition, § 194. Those for argon, krypton,
and xenon (RAMsAY and TrAVERS), from Ruporr, ‘ Phil. Mag., June, 1909,
p. 795, are not direct experimental values, however, but are calculated from critical
data.

Diameter 2, from wviscosity.—These are practically twice the values for the radii
given on pp. 476, 481 of my former memoir, where, however, errors of calculation
(here corrected) were made in the case of argon and krypton (as Dr. G. Rupborr kindly
indicated to me).

Diameter 2q, from VAN DER WAALS b.—The value for oxygen, and the second
values for nitrogen and carbon-dioxide (as well as 2¢, for the latter) are from Table 7
of EuckEN’s paper ; he does not give his authorities, but his values are probably the
most recent and reliable. The value for hydrogen, he says, 1s doubtful.
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